|  Symplectic Structures | 
Symplectic Vector Space
  $ Def: A vector space
    V with a non-degenerate antisymmetric rank-2 tensor Ω.
  * Symmetry group: The Lie
    group preserving this structure is the symplectic group Sp(V,
    Ω) ⊂ GL(V).
  * Subspaces: W < V is
    Isotropic if W ⊂ W⊥:=
    {null vectors of Ω|W}; Coisotropic (first class) if
    W⊥ ⊂ W;
    Weakly symplectic (second class) if W ∩
    W⊥ = 0; Lagrangian if isotropic
    and coisotropic, W = W⊥;
    Otherwise, it is called mixed.
Canonical Transformation
  > s.a. fock space; quantum states.
  $ Def: Given a symplectic vector
    space (V, Ω), a canonical transformation is a linear map A:
    V → V that preserves Ω, i.e., Ω(A(X),
    A(Y)) = Ω(X, Y), for all X, Y
    ∈ V, or At Ω A = Ω.
  * Generating function: The function
H(X) = \(-{1\over2}\)X At Ω X .
  * Point transformation:
    A canonical transformation that does not mix coordinates and momenta.
  @ Generating functions: Anselmi EPJC(16)-a1511
      [in classical mechanics and quantum field theory];
    Anselmi EPJC(16)-a1604 [reference formulas].
  @ Special types: Brodlie JMP(04)qp [non-linear];
    Dereli et al IJMPA(09)-a0904 [in 3D phase space with Nambu bracket].
  @ Quantum: Bordner JMP(97);
    Davis & Ghandour PLA(01) [and system equivalence];
    Cervero & Rodríguez IJTP(02)qp/01 [and squeezing];
    Lacki SHPMP(04) [in early quantum mechanics].
  @ Generalizations: Cariñena et al JGM(13)-a1303 [canonoid transformations, and symmetries];
    Kupsch RVMP(14) [for fermions];
    Valtancoli JMP(15)-a1510 [with non-commutative Poisson brackets, minimal length].
Kähler Spaces and Manifolds / Structures 
  > s.a. complex structure.
  $ Kähler space: A
    symplectic vector space (V, Ω) with a complex structure J,
    compatible with Ω in the sense that the rank-2 tensor ΩJ is
    positive-definite and symmetric (a Kähler metric).
  $ Kähler manifold:
    A triple (M, Ω, J), with M a differentiable
    manifold, Ω and J strongly compatible, and J integrable;
    > s.a. Wikipedia page.
  @ Kähler space: in Artin 57;
    Flaherty 76 [in relativity];
    in Helgason 78;
    Calabi & Chen JDG(02) [space of Kähler metrics].
  @ Kähler manifold: Hashimoto et al JMP(97) [hyperkähler metrics from Ashtekar variables];
    Pedersen et al LMP(99) [quasi-Einstein Kähler metrics];
    Chen JDG(00) [space of Kähler metrics];
    Cortés m.DG/01-ln [special Kähler manifolds];
    Ross & Thomas JDG(06) [constant curvature, obstructions];
    Aazami & Maschler a1711 [from Lorentzian geometries].
  @ Generalizations:
    Gualtieri CMP(14) [generalized complex geometry];
    > s.a. Hyperkähler Structure.
Generalizations > s.a. Contact
  Manifold; Cosymplectic Structures;
  types of symplectic structures.
  * Higher-order
    structures: A manifold is n-plectic if it is equipped
    with a closed, non-degenerate form of degree n + 1;
    > s.a. formulations of general relativity.
  @ General references: Zumino MPLA(91) [Fermionic coordinates];
    Nikolić qp/98 [non equal-time];
    Vanhecke BJP(06)mp/05 [non-commutative configuration space];
    Sergyeyev Sigma(07)mp/06 [weakly non-local];
    > s.a. non-commutative physics; poisson
      structures [Moyal and Nambu brackets]; Supermanifolds.
  @ Higher-order structures: Rogers PhD(11)-a1106;
    Sämann & Szabo RVMP(13)-a1211 [quantization of 2-plectic manifolds].
Related Concepts  see symplectic manifolds; symplectic structures in physics.
  see symplectic manifolds; symplectic structures in physics.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 mar 2019