|  Chaos in the Gravitational Field | 
In General
  * Note: Unless otherwise specified,
    in this page gravitational theory is described by 4D general relativity.
  * History: Study of the subject started
    with the mixmaster model, in the hope that it would lead to understanding anisotropy
    dissipation; The goal has not really been achieved, and has partly been taken over
    by inflation.
  * Difficulty: One of the main indicators
    of chaos, the Lyapunov exponents, seems to be useless because of coordinate ambiguities;
    Must use topological indicators such as fractal basins of attraction, stochastic
    layers or cantori.
  * Turbulence? Notice that, contrary
    to the situation in hydrodynamics, in general relativity there is no twist/vorticity
    for a congruence of geodesics.
  @ General references: Frauendiener & Newman in(90);
    Ove GRG(90);
    Burd & Tavakol PRD(93);
    Núñez-Yépez et al pr(93);
    Szydłowski PLA(93),
    & Krawiec PRD(96);
    Rugh in(94),
    CSF(94);
    Biesiada CQG(95).
  @ Invariant characterization:
    Biesiada & Rugh gq/94 [Maupertuis principle];
    Cornish gq/96,
    gq/97-MG8,
    & Levin PRL(97)gq/96,
    PRD(97)gq/96;
    Witt & Schleich gq/96-proc;
    Szydłowski JMP(99) [and superspace metric];
    Ramey & Balazs FP(01);
    Motter PRL(03)gq.
Classical Cosmological Models > s.a. cosmological
  models / collapse; chaos in bianchi
  models; string phenomenology.
  @ FLRW spacetime: Calzetta & El Hasi CQG(93)gq/92;
    Calzetta in(94),
    & González PRD(95)gq/94 [and semiclassial general relativity];
    Blanco et al GRG(94),
    GRG(95);
    Helmi & Vucetich PLA(97),
    Leach et al gq/01 [+ scalar, Painlevé];
    Bombelli et al JMP(98)gq/97;
    Kamenshchik et al IJMPD(97)gq/98,
    IJMPD(98)gq [with cosmological constant],
    PRD(99)gq/98 [topological entropy];
    Monerat et al PRD(98);
    Cotsakis & Miritzis gq/00-MG9;
    Pavluchenko & Toporensky G&C(00)gq/99;
    Toporensky gq/00-MG9;
    Motter & Letelier PRD(02)gq;
    Jorás & Stuchi PRD(03)gq [complexified a, bifurcations];
    Tanaka et al CSF(05);
    Hrycyna & Szydłowski CSF(06)gq/05 [in terms of geodesics of Jacobi metric].
  @ Inflation: Calzetta & El Hasi PRD(95)gq/94;
    Cornish & Levin PRD(96)ap/95;
    Cornish et al PRL(96)ap;
    Monerat et al gq/97-MG8;
    de Oliveira & Soares MPLA(98)gq;
    Easther & Maeda CQG(99)gq/97 [2-field];
    de Oliveira et al PRD(99)gq [universality];
    Easther & Parry PRD(00)hp/99 [inhomogeneous];
    Jorás & Cárdenas PRD(03)gq/01 [and particle creation].
  @ Einstein-Yang-Mills theory:
    Gal'tsov & Volkov PLB(91) [absent in isotropic case];
    Darian & Künzle CQG(95) [axisymmetric];
    Barrow & Levin PRL(98)gq/97;
    Matinyan gq/00-MG9.
  @ Inhomogeneous models: Weaver et al PRL(98)gq/97;
    Benini & Montani gq/07-MGXI [covariant description],
    gq/07-MGXI [quantum aspects].
  @ Related topics: Kandrup & Drury ANYAS(98)ap [classification of Hamiltonians];
    Heinzle et al PRD(05)gq/04,
    PRD(06)gq [Bianchi IX and Kantowski-Sachs + fluid, questioning];
    Li et al CQG(05)ap [barotropic fluid and quintessence, alleviate fine tuning].
Other Theories and Systems > s.a. brane cosmology.
  * Higher dimensions:
    The generically chaotic BKL behavior near a spacelike singularity
    disappears in dimension D = d + 1 > 10.
  @ String theory: Barrow & Dąbrowski PRD(98)ht/97 [no chaos];
    Damour  & Henneaux PRL(00)ht [Einstein-dilaton-p-form, oscillations],
    PRL(01)ht/00 [as chaotic quantum billiard];
    Forte CQG(09)-a0812 [formalism for billiard representation].
  @ Higher dimensions:
    Elskens & Henneaux CQG(87),
    Helmi & Vucetich PLA(95) [Kaluza-Klein];
    Damour et al PLB(01)ht [hyperbolicity of Kac-Moody algebras].
  @ Quantum gravity: Dittrich et al PLB(17)-a1602 [and continuity of observables];
    > s.a. minisuperspace quantum cosmology [semiclassical and quantum chaos].
Consequences and Related Topics > s.a. chaos;
  phenomenology of geometry in quantum gravity.
  @ Patterns in cosmology:
    Barrow & Levin ap/99-proc;
    Levin & Barrow CQG(00)gq/99.
  @ Other: Hu et al gq/93-proc [dissipative processes];
    Lombardo et al MPLA(99) [particle creation];
    Haggard PRD(13)-a1211 [and quantum gravity, from quantized volumes].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 21 mar 2019