|  Time in Quantum Gravity | 
In General > s.a. 2D quantum gravity;
  3D gravity; parametrized
  theories; quantum cosmology; time;
  topology change.
  * The issue: Quantum
    gravity does not have a satisfactory interpretation (even minisuperspace
    models), mainly because of the difficulty of defining a measurement "made
    at a time t''; Time is merely an arbitrary label, only histories are
    meaningful; This is in addition to, and much more serious than, the problem
    that time measurements are subject to a quantum uncertainty; > s.a.
    quantum-gravity phenomenology [including minimum time].
  @ Reviews:
    Isham in(92)gq,
    LNP(94)gq/93;
    Kuchař in(92);
    in Zeh 92;
    Macías & Quevedo gq/06-in;
    Anderson a1206.
  @ General references: Torre PRD(92);
    Barbour PRD(93),
    CQG(94),
    CQG(94);
    Moffat FP(93);
    Kitada gq/94,
    & Fletcher Ap-gq/94;
    Unruh in(94)gq/93;
    Parentani gq/97-MG8;
    Shestakova & Simeone G&C(04)gq [canonical],
    G&C(04)gq [path integral];
    Kiefer a0909-FQXi;
    Anderson ch(12)-a1009;
    Husain & Pawłowski PRL(12)-a1108,
    comment Świeżewski QCG(13)-a1307 [with dust and other fields, complete theory based on lqg];
    Huggett et al a1207-in;
    Gryb & Thébault BJPS(15)-a1408 [time remains];
    Małkiewicz CQG(17)-a1601 [and quantum dynamics];
    Bryan & Medved a1811
      [the underlying "problem of causality"];
    Wüthrich a2009.
  @ Time / spacetime as emergent:
    Singh IJMPD(10);
    Gomes CQG(17)-a1706.
  @ Arrow of time: Liu PhSc(93)dec;
    Ellis et al CSF(99)ht/98;
    Castagnino PRD(98)gq/96,
    et al CQG(02)gq [minisuperspace];
    Jejjala et al Ent(12)-a1203.
After Quantization: From States > s.a. quantum cosmology.
  * WKB interpretation: Assume Ψ
    = A exp(iS), nearly classical; From the Hamilton-Jacobi equation
    for S, we obtain trajectories in superspace; From these, we get a current.
  * From quantum correlations: Time arises
    as an approximation, and the Hamiltonian formulation is appropriate for late times.
  @ Quantum correlations: Wootters IJTP(84);
    Kiefer PRD(88).
  @ Probabilistic time: Hartle in(87);
    Halliwell PRD(87) [correlations];
    Castagnino in(88),
    PRD(89),
    in(90),
    & Mazzitelli PRD(90);
    Castagnino & Lombardo PRD(93) [and real clocks];
    Abolhasani & Golshani gq/97;
    Khosravi & Sepangi PLB(09)-a0903.
  @ Other: Bander gq/02 [vacuum expectation value of field energy];
    Halliwell & Thorwart PRD(02) [and decoherent histories];
    Lawrie PRD(11)-a1011;
    Chataignier PRD(20)-a1920 [WKB time and quantum Dirac observables].
Before Quantization: Intrinsic Time > s.a. canonical general relativity
  [dust as reference frame]; canonical quantum gravity [gauge fixing]; {& Ashtekar}.
  * Idea: Time is a function
    of phase space variables (3D), so probabilities are conditional probabilities;
    Problems arise because the quantum mechanics analog is not viable; One needs a measure,
    and a definition of time such that H is linear in p0.
  * Conditions: Not always
    possible (> see Taub-NUT); A coordinate
    q0 in phase space can be singled out
    as an intrinsic time if there is a canonical transformation such that the
    Hamiltonian constraint can be written as \(C(p, q) = p_0^{~} + h(p_i^{~}, q^i)\),
    with i ≠ 0.
  * Variation: Consider Ψ as
    a single-particle state in superspace (third quantization).
  @ General references: Kuchař in(81),
    JMP(81),
    JMP(82),
    in(90);
    Page & Wootters PRD(83);
    Hájíček PRD(86),
    in(86); Barbour in(86);
    Unruh & Wald PRD(89);
    Kiefer CQG(89) [continuous measurement, by fermions];
    in Smolin in(91);
    Page in(93)gq;
    Doldán et al IJTP(96)ht/94;
    Romano gq/95;
    Graham & Luckock PRD(97) [cosmological, supergravity];
    Pulido et al GRG(01)gq/00;
    Simeone 02 [path integral and canonical];
    Pestov gq/03;
    Mercuri & Montani MPLA(04)gq/03,
    NCB(05)gq/04-conf [dust as frame];
    Gambini et al NJP(04)gq [and decoherence];
    Bryan & Medved a1803 [ideal clocks and the conditional probability interpretation].
  @ Examples: McGuigan PRD(90),
    Gorobey & Lukyanenko CQG(93),
    TMP(93) [3D volume];
    Smolin & Soo NPB(95)gq/94 [Chern-Simons functional];
    Ashworth PRD(98)qp/97 [oscillator as clock for rest];
    Cianfrani et al CQG(09)-a0807 [with perfect fluid, entropy];
    Alexander et al CQG(13) [electric vector potential];
    Massar et al PRA(15)-a1410 [experiments with trapped ions];
    Magueijo & Smolin Univ-a1807 [Chern-Simons time].
  @ Problems with clock: Weinstein gq/97-MG8;
    Dolby gq/04 [response].
  @ Specific types of spacetimes:
    Friedman & Higuchi PRD(90) [asymptotically flat];
    Romano & Torre PRD(96)gq/95 [2 Killing vector fields].
  @ From HJ formalism: Peres in(98)gq/97;
    Simeone JMP(99) [FLRW models].
Before Quantization: Extrinsic Time > s.a. unimodular gravity.
  @ General references: Beluardi & Ferraro PRD(95)gq/94;
    Kauffman & Smolin gq/97,
    comment Kitada & Fletcher gq/97;
    Ferraro & Sforza PRD(99);
    Ferraro G&C(99);
    Giribet & Simeone PLA(01)gq [closed de Sitter example].
  @ Spacetime volume: Henneaux & Teitelboim PLB(89);
    Brown & York PRD(89);
    Unruh & Wald PRD(89);
    Bombelli in(91);
    Bombelli et al PRD(91);
    Sorkin IJTP(94).
More Radical > s.a. semiclassical cosmology.
  * Modify quantum mechanics:
    Maybe no Hilbert space, ...: & Penrose, Smolin.
  * Relational time, no time needed:
    Quantum gravity is fine as is, time does not an essential role in its formulation;
    Trouble is, find observables; & Barbour, Hawking, Misner.
  @ Relational: Englert PLB(89);
    Rovelli pr(88),
    in(90),
    PRD(90),
    PRD(91);
    Isham & Butterfield gq/99-ch;
    Smolin in(00)gq/01 [criticism];
    Gambini  & Porto PRD(01)gq [models];
    Butterfield BJPS-gq/01;
    Colosi & Rovelli PRD(03)gq [model];
    Gambini et al NJP(04)gq,
    PRD(04)gq [and decoherence],
    PRL(04)ht [and black-hole information];
    Gambini et al PRD(09)-a0809 [with Dirac observables],
    a0903-FQXi [and free will, decidability];
    Rovelli a0903-FQXi;
    Gryb CQG(09)-a0810;
    Anderson CQG(11) [relational particle model];
    Kajuri IJMPD-a1705-GRF [conceptual issues];
    Höhn & Vanrietvelde a1810 [dynamics relative to different quantum clocks];
    Marchetti & Oriti a2008 [in emergent spacetime].
  @ Ehrenfest equation: Greensite NPB(90),
    NPB(91);
    Padmanabhan Pra(90);
    Squires PLA(91);
    Brotz & Kiefer NPB(96)gq.
  @ Self-measurement: Mensky CQG(90);
    Camacho & Camacho-Galván NCB(99)gq.
  @ Other approaches: Meyer GRG(93) [and quantum gravity phase transition];
    Horwitz IJMPD(96)gq/95 [quantum tunneling];
    Heller & Sasin PLA(98)gq/97 [non-commutative geometry];
    Hitchcock qp/00 [information, causal networks];
    Roy gq/03-conf [from discreteness];
    Dreyer a0904-FQXi;
    Markopoulou a0909-FQXi [quantum gravity is spaceless, not timeless].
References > s.a. discrete spacetime [discrete time];
  parametrized theories [model]; geometrodynamics;
  gravitational thermodynamics.
  @ General: Ruelle CMP(82);
    Hájíček PRD(86);
    Zeh PLA(86),
    PLA(88);
    Hartle in(89), in(91);
    Unruh IJTP(89);
    Unruh & Wald PRD(89);
    Mensky PLA(90);
    Fukuyama  & Kamimura MPLA(91);
    Menskii GRG(91);
    Pegg JPA(91);
    Smolin gq/93;
    Wald PRD(93)gq;
    Carlini & Greensite PRD(95)gq/94;
    Anderson & York PRL(98)gq;
    Biswas et al IJMPD(01)gq/99;
    Kheyfets & Miller IJMPA(00)gq;
    Tronconi et al PRD(03)gq [and inflaton];
    Guendelman & Kaganovich gq/03-conf [time-dependence of \(\langle\)A\(\rangle\)s];
    Bojowald et al PRD(04)gq [lqg];
    Larsson ht/05 [from anomalies upon quantization];
    Thibeault & Simeone IJMPD(07)gq/06 [2-component Wheeler-DeWitt equation];
    Sawayama a0705;
    Anderson IJMPD(09)-a0709,
    a0711-proc ["records theory"];
    Carroll a0811-FQXi;
    Anderson CQG(12)-a1204 [combined histories, timeless and semiclassical approach],
    a1306-conf [Machian approach];
    Kamenshchik et al IJMPD(19)-a1809 [gauge fixing vs Born-Oppenheimer method];
    Anderson a1905,
    a1905,
    a1905,
    a1905 [local resolution];
    Di Gioia et al a1912 [semiclassical approach];
    Cherkas & Kalashnikov Univ(20)-a2003 [approaches].
  @ From constraints as expectation values:
    Kheyfets et al IJMPA(96);
    Nikolić gq/03 [\(\langle\)H\(\rangle\) = 0].
  @ More than one timelike directions: & Vafa's "F theory" – NS(97)nov1;
    Vongehr ht/99-conf,
    ht/99 [black holes];
    Dvali et al hp/99-in.
  @ Related topics: Marolf CQG(95)gq/94 [parametrized theories];
    Hori PTP(98)ht [quantum black holes];
    George et al gq/03-proc [reduced phase space];
    Monton in(07) [presentism and quantum gravity];
    Jannes  FP(15)-a0904-FQXi [insights from condensed matter];
    Barbour et al GRG(13)-a1301 [in a point-particle analogue model of scale-invariant gravity].
Online Resources > see tau, Time and Universe.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 feb 2021