|  ADM Formulation of General Relativity | 
In General
  > s.a. 3D gravity; fluids; initial-value
  formulation; lattice gravity; metric decomposition;
  numerical relativity.
  $ Variables: Phase space is the set
    of pairs \((q_{ab}^~, p^{ab})\), where \(q_{ab}^~\) is a positive-definite metric
    on the spatial manifold Σ and \(p^{ab}\) a tensor density of weight 1,
    related to the extrinsic curvature \(K_{ab}^~\) (in a solution) by
pab = (q1/2/2κ) (Kab − Kqab) , or Kab = 2κ q−1/2(pab − \(1\over2\)pqab) .
* Boundary conditions: The spacetime (M, gab) is asymptotically flat at spatial infinity if the data (qab, Kab) induced on a spacelike hypersurface Σ are such that
qab − eab = O(r−1) ; ∂c qab & Kab = O(r−2) ; ∂c ∂d qab & ∂cKab = O(r−3); etc ;
    One can then find a chart such that qab =
    (1 + M/2r)4
    eab
    + O(r−2);
    In covariant form, gab
    = ηab
    + γab,
    γab
    = \(O(\rho^{-1}\)) in the Cartesian chart for κ.
  * Symplectic structure:
Ω|(q, p)[(h, π), (h', π')] = ∫Σ (hab π'ab − \(h'_{ab}\, \pi^{ab}\)) dv .
* Constraints and Hamiltonian: For a given choice of the lapse function N and shift vector Na,
\(\cal H\):= q1/2 3R − q−1/2 (pab pab − \(1\over2\)p2) , \(\cal H\)b:= Da pab , H = ∫Σ d3x (N\(\cal H\) + Na\(\cal H\)a) .
* Constraint algebra: If the smeared scalar and vector constraints are, respectively \(\cal C\)[f] = ∫Σ d3x f\(\cal H\) and \(\cal C\)[f a] = ∫Σ d3x f a \(\cal H\)a, then
{\(\cal C\)[f a], \(\cal C\)[ga]} = \(\cal C\)[\(\cal L\)f ga] ; {\(\cal C\)[f a], \(\cal C\)[g]} = −\(\cal C\)[\(\cal L\)f g] ; {\(\cal C\)[f], \(\cal C\)[g]} = −\(\cal C\)[qab (f ∂b g − g ∂b f)] .
  @ General articles: Dirac PRS(58),
    PR(59);
    Arnowitt et al JMP(60),
    PR(60),
    in(62)
      [+ GRG(08)];
    Anderson RMP(64);
    Kuchař JMP(72) [bubble-time formalism];
    Regge & Teitelboim AP(74) [boundary terms];
    Isenberg & Nester in(80);
    Ashtekar PhyA(84) [good summary];
    Beig & O'Murchadha AP(87) [boundary conditions];
    Grishchuk & Petrov JETP(87);
    Vulcanov & Ciobanu AUVT(01)gq/00 [Maple routines];
    Brewin PRD(09)-a0903 [equations from second variation of arclength];
    Kiriushcheva et al a1108 [change of field variables and covariance];
    Perlov PLB(15)-a1412 [scalar massless field as time];
    > s.a. history of gravity.
  @ Constraint algebra: Teitelboim AP(73);
    Kouletsis CQG(96)gq;
    Markopoulou CQG(96)gq;
    Kiriushcheva et al IJTP(12)-a1107 [group properties of the Lagrangian symmetries of the action];
    > s.a. constraints.
  @ Embedding variables: Hojman et al AP(76);
    Kuchař JMP(76);
    Isham & Kuchař AP(85);
    Braham JMP(93);
    Ambrus & Hájíček PRD(01)gq/00 [relationship with ADM];
    > s.a. models in canonical general relativity [shells].
Energy-Momentum > s.a. gravitational energy-momentum;
  canonical general relativity; angular momentum.
  $ Def: Given a spacelike surface Σ
    in spacetime which is asymptotically flat at spatial infinity, with induced metric
    qab and a reference flat metric
    eab, the ADM four-momentum associated with it is defined by
E = (16πG)−1 limr →
    ∞ \(\oint\)(∂a qbc
    − ∂b qac)
    eac
    dS b
    pm
    = (8πG)−1 limr →
    ∞ \(\oint\)(Kab
    − Kcc
    qab) Na
    dS b =
    (8πG)−1 limr →
    ∞ \(\oint\) pab
    Na dS b,
    where r2 = ∑i
    (xi)2,
    with x1, x2,
    x3 asymptotically Euclidean
    coordinates for eab,
    the integrals are taken over constant r spheres, and N
    is an asymptotic translation; The results are independent of the choice
    of eab, and the vector
    Pa
    = −Ena+pa
    is independent of S (i.e., it is conserved), where na
    is the future-directed unit timelike normal to Σ at spacelike infinity.
  @ Asymptotically flat: Arnowitt et al PR(59),
    PR(60),
    PR(61),
    in(62);
    Ashtekar & Horowitz PLA(82) [cannot be null];
    Chruściel in(86)-a1312 [as geometric invariants];
    Baskaran et al AP(03)gq [relationships];
    Shi & Tam m.DG/04 [mass estimates];
    Brewin GRG(07)gq/06 [simple mass expression];
    Michel JMP(11)-a1012 [mass, invariance];
    Lopes de Lima & Girão TAMS-a1108 [manifolds with warped product structure];
    Cheng & Zhu a1109 [behavior under the Yamabe flow].
  @ More general spacetimes: Nucamendi & Sudarsky CQG(97)gq/96 [quasi-asymptotically flat].
Variations
  > s.a. 3D general relativity; non-standard approaches
  to canonical general relativity; quasilocal general relativity [2+2].
  @ Various theories: York gq/98;
    Menotti & Seminara AP(00)ht/99,
    NPPS(00)ht/99 [2+1 with particles];
    Barbashov et al IJMPA(08)ap/05-in;
    Lacquaniti & Montani IJMPD(06)gq,
    gq/06-MGXI [5D Kaluza-Klein];
    Chakrabarti et al GRG(11)-a0908 [f(R) gravity];
    Kiriushcheva et al a1111
      [comment on Chaichian et al's "covariant renormalizable gravity"];
    Kastikainen a1908 [Lovelock gravity];
    > s.a. modified general relativity; teleparallel gravity.
  @ Extended objects: Capovilla et al NPPS(00)ht;
    Steinhoff et al PRD(08),
    a1002-MGXII,
    Steinhoff & Schäfer EPL(09)-a0907 [spinning objects];
    > s.a. black-hole entropy.
  @ Null surfaces: Goldberg in(86),
    pr(86);
    Torre CQG(86);
    Goldberg et al CQG(92).
  @ Other theories and variations:
    Gunnarsen CQG(89) [weak field];
    Brown & Marolf PRD(96)gq/95 [material reference systems];
    Watson & Klauder CQG(02)gq/01 [metric on phase space];
    Bonanno et al CQG(04)gq [variable G and Λ];
    Wang PRD(05)gq [conformal];
    Brown in(09)-a0802 [strongly hyperbolic extension];
    Ghalati a0901;
    Gao PLB(10)-a0905 [f(R) and K-essence gravity];
    Dengiz MS-a1103 [and conformal decomposition];
    Golovnev et al JCAP(15)-a1412 [bimetric theory];
    > s.a. massive gravity; numerical
      relativity [BSSN form]; Weyl Geometry.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 22 mar 2021