|  Defects | 
In General > s.a. topological defects.
  @ General references: Mazenko 02 [fluctuations, order];
    Manko et al PhyA(04) [local states];
    Afonso et al PLB(08)-a0710 [building networks of defects];
    Grigorio et al PLB(10)-a0908 [dual approaches to effective theory of condensation];
    Epstein & Segev a1305-conf [unified geometric treatment];
    Epstein a1912 [approaches].
  @ In condensed matter physics:
    Mermin RMP(79) [and homotopy];
    Nelson 02 [r PT(03)may];
    Cancès et al CMP(08)
      [electrons, mean-field model];
    Alexander et al RMP(12) [in nematic liquid crystals];
    Tuomisto & Makkonen RMP(13) [identification in semiconductors with positron annihilation];
    Freysoldt et al RMP(14) [point defects, first-principles calculations];
    Schecter & Kamenev PRL(14) [phonon-mediated interactions between defects in quantum liquids];
    Kamien & Mosna NJP(16)-a1510 [in smectic liquid crystals, topological structure of the defects];
    > s.a. carbon [in graphene]; Elasticity;
      gauge theories; Impurities; ising
      models.
  @ In various types of field theories:
    Bazeia ht/05-ln [scalar field theory];
    Caudrelier IJGMP(08)-a0704 [integrable field theories];
    Fuchs et al NPB(11)-a1007 [rational conformal field theory, classifying algebra for defects];
    Klinkhamer & Rahmede PRD(14)-a1303 [in Skyrme model, non-singular, with non-trivial spacetime topology];
    Balasubramanian JHEP(14)-a1404
      [codimension-2 defects in 4D, N = 2 SCFTs].
  @ Dislocations, disclinations: Katanaev PU(05)cm/04-ln [Riemann-Cartan framework];
    Comer & Sharipov mp/05 [differential equations and differential geometry];
    Kleman & Friedel RMP(08) [rev];
    Van Goethem & Dupret a1003 [mesoscale, geometric distributional approach];
    Christodoulou & Kaelin ATMP-a1212 [dynamics of a crystalline solid with a continuous distribution of dislocations];
    Malyshev a1612-MG13
      [Einstein-like Lagrangian geometrical field theory];
    Katanaev & Volkov a1908 [Chern-Simons theory];
    > s.a. Extended Objects; Fractons;
      Plasticity; types of lorentzian geometries.
And Spacetime Curvature / Torsion
  * Spacetime defects:
    A distribution of topological defects embedded in a classical spacetime is
    one possible way to model the effects of a quantum spacetime structure.
  @ References: Maluf & Goya CQG(01)gq [and teleparallelism];
    Schmidt & Kohler GRG(01)gq [simplicial, Regge calculus];
    Kleinert BJP(04)-proc;
    Tartaglia IJMPA(05)gq/04-proc;
    Kleman a0905 [matter as condensed-matter-type defects];
    Radicella & Tartaglia AIP(10)-a0911 ["cosmic defect theory"];
    Kleman a1204
      [classification of 2D defects of a 4D maximally-symmetric spacetime];
    Bennett et al IJMPA(13)-a1209 [and Plebański's theory of gravity];
    Hossenfelder PRD(13)-a1309,
    PRD(13)-a1309,
    AHEP(14)-a1401 [and phenomenology];
    Arzano & Trzesniewski AHEP(17)-a1412 [energy-momentum and group momentum space];
    Hossenfelder & Gallego Torromé CQG(18)-a1709
      [modification of general relativity with local space-time defects, and FLRW models];
    > s.a. einstein-cartan theory.
  @ Types, examples of spacetime defects:
    Randono & Hughes PRL(11)-a1010 [torsional monopoles];
    Klinkhamer PRD(14)-a1402 [non-singular, Skyrmion-type defect];
    Klinkhamer & Sorba JMP(14)-a1404 [defects which are homeomorphic but not diffeomorphic];
    Brunner et al CMP(15)-a1404 [discrete torsion defects];
    Klinkhamer JPCS(19)-a1811 [soliton-type];
    Queiruga a1912 [non-metricity and spacetime foam];
    > s.a. geons; Skyrmions.
  > And quantum gravity: see approaches
    to quantum gravity; photon phenomenology in quantum gravity;
    types of quantum spacetime.
  > Related effects: see examples
    of entangled systems; lensing; particle
    models; quantum-field-theory effects; spin;
    wave propagation.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2020