|  3-Dimensional Geometries | 
In General > s.a. riemann
  tensor / Geometric Topology;
  types of metrics.
  * Types of geometry:
    (Thurston) There are eight, spherical (elliptic), Euclidean, hyperbolic (the
    least understood), mixed spherical-Euclidean, mixed hyperbolic-Euclidean,
    and three exceptional ones.
  * Geometrization conjecture:
    (Thurston) Every closed, oriented 3-manifold has a natural decomposition into
    geometrical pieces (which have one of the eight well-defined types of geometric
    structure); This is known to be true for Haken manifolds; If true in general,
    Poincaré's conjecture would follow.
  * Curvature: The Weyl tensor
    Cabcd vanishes, so the
    Riemann tensor depends on the Ricci tensor only,
Rabcd = 2 (ga[c Rd]b − gb[c Rd]a) − R ga[c gd]b .
  * Diagonalization: Every
    3D Riemannian manifold has a diagonalization (Darboux, Cotton, 1800s).
  @ General references: Thurston 78;
    Hamilton JDG(82);
    Gabai JDG(83),
    JDG(87),
    JDG(87);
    Thurston AM(86).
  @ And physics: Gegenberg et al CQG(02)ht [and M-theory];
    > s.a. geometry and topology in cosmology.
  @ Related topics: Ó Murchadha pr(91) [Yamabe constant];
    Gegenberg & Kunstatter gq/93 [parametrization];
    Birmingham et al PRL(99) [and boundary structure];
    Gegenberg & Kunstatter CQG(04)ht/03 [Ricci flow analysis];
    Reiris a1002
      [relations between Ricci curvature, scalar curvature and volume radius];
    Kowalski & Sekizawa JGP(13) [diagonalization];
    Pugliese & Stornaiolo GRG(15)-a1410 [deformations].
  @ As deformations of constant curvature:
    Gegenberg & Kunstatter gq/93;
    Coll et al GRG(02)gq/01.
Special Cases > s.a. types of metrics.
  * Homogeneous:
    Characterized by the three eigenvalues of the Ricci tensor.
  * Spherically symmetric: They are all conformally flat.
  * With positive R:
    They are all connected sums of elliptic spaces and
    copies of S2 × S1;
    The moduli space for the orientable compact case is path-connected.
  @ General references: Kowalski & Prüfer MA(94) [with distinct constant Ricci eigenvalues];
    Beig gq/96
      [conformally flat 3-manifolds, transverse-traceless tensors];
    Doyle & Rossetti G&T(04) [isospectral but non-isometric compact manifolds];
    Grosche PAN(07)qp/05 [Darboux spaces, path integrals];
    Dryuma TMP(06) [constant curvature];
    Coda AM-a0907 [with positive scalar curvature].
  @ With Killing vector felds: Gürses CQG(10)-a1007 [Ricci tensor in terms of the Killing vector];
    Kruglikov & Tomoda CQG(18)-a1804 [explicit algorithm].
With Lorentzian Metric > s.a. 3D general relativity
  / lorentzian geometry; spherical symmetry.
  @ Types: Auslander & Markus 59 [flat];
    Bona & Coll JMP(94) [isometry groups];
    Gilkey & Nikčević IJGMP(05) [affine curvature homogeneous];
    Calvaruso JMP(07) [with prescribed Ricci tensor];
    Calvaruso & De Leo IJGMP(09) [pseudo-symmetric].
  @ With constant curvature invariants: Coley et al CQG(08)-a0710 [all invariants constant];
    Calvaruso JGP(07) [homogeneous],
    DG&A(08) [with distinct constant Ricci eigenvalues].
  @ Classification:
    Torres del Castillo & Gómez-Ceballos JMP(03);
    Milson & Wylleman CQG(13)-a1210 [it requires at most fifth covariant derivatives of the curvature tensor].
With Riemannian Metric > s.a. riemannian geometry.
  @ References: Carfora & Marzuoli gq/93 [and simplicial quantum gravity, critical phenomena];
    Ferrando & Sáez CQG-a2004 [with a transitive group of isometries].
Related Topics > s.a. extrinsic
  curvature [minimal surfaces]; knots and physics.
  @ Surfaces: Montaldo & Onnis JGP(05) [constant Gauss curvature].
  @ Random models: Fukuma et al JHEP(15)-a1503 [triangles glued together along multiple hinges]. 
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 13 feb 2021