|  Toda Lattice | 
In General
  * Idea: One of the main examples of integrable system.
  $ Def: A lattice of points
    on a line (infinite or finite) with equal masses, longitudinally oscillating
    and subject to nearest neighbor couplings, decreasing exponentially with
    the separation (exponentially repulsive forces).
  * Lagrangian (first-order):
L = ∑i=1N \(1\over2\)(Pi Q·i − Qi Pi·) − ∑i=1N (\(1\over2\)Pi2 + fi exp{Qi − Qi+1}) ,
    where N is the number of masses on the line, and fi
    a set of real coupling constants; There is also an inequivalent Lagrangian (bi-Hamiltonian
    structure, > see types of symplectic structures).
  * Equations of motion:
Q·i = Pi , Pi· = fi−1 exp{Qi−1 − Qi} − fi exp{Qi − Qi+1} .
* Lax pair: The pair (Lij, Aij) satisfying dL/dt = [L, A], given by
Lij = ∑k=1n Pk δik δj,k + exp{Qk − Qk+1} (δik δj,k+1 + δik+1 δj,k) ,
Aij = ∑k=1n exp{Qk − Qk+1} (δik δj,k+1 − δik+1 δj,k) .
  * Approximation: Note that
    the Hénon-Heiles approximation is chaotic!
  > Online resources:
    see Gerald Teschl page;
    MathWorld page;
    Wikipedia page.
References > s.a. self-dual solutions
  of general relativity; Lieb-Robinson Bounds.
  @ General: Toda PRP(74);
    Das & Okubo AP(89);
    Toda 89;
    in Perelomov 90;
    Corrigan PW(92)dec;
    Krichever & Vaninsky ht/00-in;
    Tomei a1508 [rev].
  @ Hamiltonian: Gekhtman LMP(98) [non-abelian];
    Carlet LMP(05)mp/04 [2D, and R-matrices];
    Tsiganov JPA(07) [bi-Hamiltonian structures];
    Fehér PLA(13) [action-angle map and duality];
    Evripidou a1504 [bi-Hamiltonian structures].
  @ Properties: Anderson JMP(96)ht/95 [open N-body, solution];
    Kasman JMP(97) [orthogonal polynomials];
    Nimmo & Willox PRS(97) [Darboux transformations];
    Calderbank JGP(00) [geometry];
    Vaninsky JGP(03)mp/02 [open, and Atiyah-Hitchin bracket];
    Agrotis et al PhyA(06)mp/05 [open, super-integrability];
    Likhachev et al PLA(06) [thermodynamics].
  @ Related topics: Torrence JPA(87),
    JPA(88) [and linear wave equations],
    NPPS(88) [Kac-van Moerbeke lattice];
    Rosquist & Goliath GRG(98)gq/97 [Lax pair, geometrized];
    Gueuvoghlanian a0901 [submanifolds, Lie algebras];
    Vereschagin PLA(10) [integrable boundary problems].
  @ Quantum: Ikeda JPA(94);
    Matsuyama AP(92),
    AP(01);
    An LMP(09) [complete set of eigenfunctions];
    > s.a. deformation quantization [Moyal].
Related Systems and Generalizations
  @ Generalizations: Alber LMP(89) [relativistic];
    Saveliev ht/95 [integrable];
    Gervais & Saveliev NPB(95)ht [higher grading];
    Adler JPA(01) [arbitrary planar graph];
    Santini et al PRE(04)nl.SI [2D square lattice];
    Iwao JPA(10)
      [generalized periodic discrete Toda equation, theta-function solution].
  @ Nearby systems:
    Christiansen et al LMP(93) [integrable].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 16 jan 2016