|  Unruh Effect | 
In General
  > s.a. black-hole radiation; entanglement phenomenology
  [non-inertial frames]; particle effects [self-energy]; radiation.
  * Idea: Radiation seen
    by accelerated detectors (e.g., at rest near a black hole, or Rindler
    detectors in Minkowski spacetime); An accelerated system heats up, and
    responds to inertial vacuum fluctuations as if it was immersed in a thermal
    bath of temperature T = (2π\(\hbar\)/ck) a.
  @ Intros, reviews: Donoghue & Holstein AJP(84)aug [elementary arguments];
    Takagi PTP(86);
    Ginsburg & Frolov SPU(87);
    Crispino et al RMP(08)-a0710 [and applications, rev];
    Frodden & Valdés a1806 [pedagogical].
  @ General references: & Bisognano & Wichmann 75;
    Davies JPA(75);
    Unruh PRD(76) [detector];
    Letaw PRD(81);
    Padmanabhan ASS(82),
      CQG(85);
    Unruh & Wald PRD(82),
      PRD(84);
    Wald in(85);
    Grove & Ottewill CQG(85);
    Padmanabhan PRL(90);
    Deser & Levin CQG(98)ht,
    PRD(99)ht/98;
    Alsing & Milonni AJP(04)dec-qp [simplified, and spin-1/2];
    Lin & Hu PRD(06)gq/05;
    De Bievre & Merkli CQG(06)mp [proof];
    Obadia & Milgrom PRD(07)gq [arbitrary trajectories];
    Akhmedova et al PLB(09)-a0808 [methods];
    Gill et al AJP(10)jul-a1001 [WKB-like approach];
    Anastopoulos & Savvidou JMP(12)-a1109 [local character of the effect];
    Colosi & Rätzel Sigma(13)-a1204 [in general-boundary quantum field theory].
  @ Interpretations: Grove CQG(86);
    Barut & Dowling PRA(90) [without second quantization];
    Keyl PLB(97);
    Lynden-Bell et al AP(99)gq/98;
    Pauri & Vallisneri FP(99)gq [classical roots];
    Hu & Raval qp/00-conf;
    Noltingk IJTP(01) [consistent histories];
    Das & Zelnikov PRD(01)ht [holographic];
    Akhmedov & Singleton JETPL(07)-a0705 [simple arguments];
    Earman SHPMP(11);
    Buchholz & Solveen CQG(13)-a1212 [and the concept of temperature];
    Buchholz & Verch GRG(16)-a1505 [and Tolman's law];
    Céleri & Kiosses PLB(18)-a1804
      [as a result of spacetime quantization];
    Rosabal PRD(18)-a1808;
    > s.a. mach's principle.
  @ Back-reaction: Reznik PRD(98)gq [first-quantized];
    Casadio & Venturi PLA(99)qp;
    > s.a. Back-Reaction.
  @ And Planck-scale physics: Agulló et al PRD(08)-a0802,
    NJP(10)-a1010;
    Nicolini & Rinaldi PLB(11)-a1012 [with a minimal length];
    Alkofer et al PRD(16)-a1605 [quantum gravity signatures]. 
  @ Finite times: Martinetti & Rovelli CQG(03)gq/02;
    Schlicht CQG(04)gq/03 [and causality];
    Martinetti JPCS(07)gq/04;
    Fewster et al CQG(16)-a1605;
    Shevchenko AP(17)-a1607 [and Landauer's principle];
    Sokolov et al a1806
      [in terms of information back-flow and non-Markovianity, and memory effects].
  @ Related topics: Boyer PRD(84) [classical analog];
    Audretsch et al PRD(95) [continuous decoherence];
    Mochizuki & Suga gq/99,
    Nikolić ht/00 [energy conservation];
    Kuckert CMP(01)mp/00 [CPT symmetry];
    Fedotov et al PLA(02)ht [scalar background–non-thermal];
    Benatti & Floreanini PRA(04);
    Louko & Satz CQG(06)gq,
    gq/06-MGXI [spatial profile],
    CQG(08)-a0710 [curved spacetime];
    Schlemmer ht/07 [local equilibrium states];
    Campo & Obadia a1003 [and Lorentz symmetry];
    Tian & Jing PLB(12)-a1203 [and transition between classical and quantum decoherences];
    in Brown et al PRD(13)-a1212 [universality];
    Aref'eva & Volovich a1302;
    Buchholz CQG(15)-a1412 [macroscopic aspects];
    Barbado a1501-PhD [different observers];
    Oshita et al a1604-proc [Unruh radiation and thermal random motions];
    > s.a. casimir effect; Detector.
Specific Situations and Phenomenology > s.a. equivalence principle
  [violation]; geometric phase; rainbow gravity.
  * Proposed tests:
    It is not easy to realize an experiment whose output could be directly
    interpreted in terms of the Unruh effect because the linear acceleration
    needed to reach a temperature 1 K is of order \(10^{20}\ {\rm m/s}^2\).
  * Anti-Unruh effect: An
    effect in which a uniformly accelerated particle detector coupled to
    the vacuum cools down as its acceleration increases;
  @ Rindler space:
    Silaev & Khrustalev TMP(92) [no radiation!];
    Matsas PLB(96)gq;
    Oriti NCB(00)gq/99 [spinors];
    Schützhold PRD(01)gq/00;
    Arageorgis et al PhSc(03)jan [conceptual, and Fulling non-uniqueness];
    Peña et al PRD(05)gq;
    Satz CQG(07)gq/06 [regularisation prescription];
    Russo & Townsend CQG(10);
    Brádler et al CMP(12) [impact of the Davies-Fulling-Unruh noise on quantum communication];
    Nicolaevici CQG(15)-a1501 [with accelerated mirror masking the horizon];
    García-Chung et al a2105-Symm [and the question of superluminal communication].
  @ Circular motion, accelerated electrons:
    Bell & Leinaas NPB(83),
    NPB(87);
    Rogers PRL(88);
    Leinaas ht/01-conf [storage rings];
    Akhmedov et al ht/06-wd [no radiation];
    Schützhold et al PRL(06);
    Biermann et al a2007 [3+1 and 2+1 dimensions].
  @ Decay of accelerated particles:
    Vanzella & Matsas PRL(01)gq,
    Matsas & Vanzella IJMPD(02)gq [Fulling-Davies-Unruh effect].
  @ de Sitter background:
    Gibbons & Hawking PRD(77);
    Garbrecht & Prokopec CQG(04);
    Casadio et al MPLA(11);
    > s.a. anti-de sitter space.
  @ In a cavity: Obadia PRD(07)gq;
    Brenna et al PRD(13)-a1307 [universality and thermalization];
    Ahmadzadegan et al PRD(14) [response of particle detectors].
  @ Anti-Unruh effect: Brenna et al PLB(16)-a1504 [1+1D, detector coupled to a scalar field vacuum];
    Garay et al PRD(16)-a1607
      [accelerated detector coupled to a KMS state of a quantum field, click-rate decrease with increasing temperature];
    Li et al PRD(18)-a1802 [as an entanglement amplification mechanism].
  @ Analog realizations: Scully et al PRL(03)qp [atoms in a cavity];
    Smolyaninov PLA(08)cm/05 [photoluminescence from a gold nanotip],
    PLA(08) [in a waveguide];
    Retzker et al PRL(08)-a0710 [acceleration radiation in a BEC];
    Leonhardt et al PRA(18)-a1709 [in water waves];
    Blencowe & Wang PTRS-a2003 [on a superconducting chip];
    Gooding et al a2007 [in a BEC, interferometric detector].
  @ Proposed experimental tests: Yablonovitch PRL(89) [dynamical Casimir effect];
    Rosu IJMPD(94)gq/96,
    G&C(01)gq/94;
    Peña & Sudarsky FP(14)-a1306 [on its measurability];
    Cozzella et al PRL(17)-a1701
    + news Cho sci(17)apr;
    Cozzella et al IJMPD(18)-a1803 [with classical electrodynamics],
    PRD(18)-a1803 [for mixing neutrinos];
    Lynch et al a1903;
    > s.a. acceleration;
      bose-einstein condensate.
  @ In modified theories: Hodgkinson & Louko JMP(12) [beyond four dimensions];
    Berra-Montiel et al CQG(17)-a1612 [for higher-derivative field theory];
    Kajuri PRD(17)-a1704 [in non local field theories];
    Scardigli et al a1804 [and the GUP];
    Arzano a2003-conf
      [simple quantum system on the real line].
  @ Other situations: Rovelli & Smerlak PRD(12)-a1108 [with mirror, without entanglement];
    Barbado & Visser PRD(12)-a1207 [time-dependent acceleration];
    Uliana Lima et al nComm(19)-a1907 [accelerated extended system];
    Barbado et al a2003,
    Foo et al a2003
      [detectors in a superposition of accelerations] 
  @ Related topics: Steane a1512 [and macroscopic quantum interference];
    Capolupo & Vitiello NCC(16)-a1512 [geometric phase and temperature];
    Lochan et al EPJC-a1603
      [2D collapse model, inertial observers and quantum correlations].
Other Points of View
  @ Papers questioning the effect:
    Casadio & Venturi PLA(95)qp;
    Fedotov et al PLA(99)ht;
    Narozhny et al PRD(02)ht/99;
    Oriti NCB(00)gq/99 [spinor field];
    Ford & O'Connell PLA(06)qp/05;
    Lin & Hu PRD(07)gq/06;
    Cotăescu a1301 [how to kill it];
    Hossain & Sardar CQG(16)-a1411,
    comment Rovelli a1412 [claim of absence in polymer quantization].
  @ Defending the reality of the effect:
    Requardt a1311.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 6 may 2021