|  C-Metric | 
In General
  * Idea: A solution of
    Einstein-Maxwell theory, describing two oppositely charged black holes
    uniformly accelerating in opposite directions.
  * Line element:
ds2 = A−2 (x+y)−2 [dy2/F(y) + dx2/G(x) + k−2G(x) dφ2 − k2A2 F(y) dt2] ,
where F(y) = −1 + y2 − 2mA y3 + e2A2 y4; G(x) = 1 − x2 − 2mA x3 − e2A2 x4 = −F(−x); m, e and A are parameters, and k is a constant whose value is fixed by regularity conditions on the metric.
References
  @ Discovery: Levi-Civita RAL(17);
    Newman & Tamburino JMP(61).
  @ General references:
    Kinnersley & Walker PRD(70);
    Ehlers & Kundt in(72) [name];
    Ashtekar & Dray CMP(81);
    Dray GRG(82);
    Bonnor CQG(90);
    Hong & Teo CQG(03) [new form];
    Bini et al PRD(04)gq [perturbations, gravitational Stark effect].
  @ Geodesics: Bini et al CQG(05)-a1408 [in the equatorial plane];
    Lim PRD(21)-a2011 [null, with cosmological constant];
    > s.a. types of geodesics.
  @ Properties:
    Ernst JMP(76) [singularity and removal];
    Sládek & Finley CQG(10) [asymptotic properties].
  @ Matter: Bini et al CQG(15)-a1509 [massless Dirac particles]. 
  @ Interpretation:
    Cornish & Uttley GRG(95) [vacuum],
    GRG(95) [charged];
    Emparan PLB(96)ht,
    NPB(97)ht/96 [string-motivated];
    Pravda & Pravdová gq/02-in;
    Griffiths et al CQG(06)gq.
Related Metrics
  > s.a. Bonnor-Swaminarayan; Melvin Solution.
  @ In de Sitter space, with cosmological constant:
    Podolský & Griffiths PRD(01)gq/00;
    Dias & Lemos PRD(03);
    Salti APS(05)gq [energy];
    Chen et al PRD(15)-a1501.
  @ Rotating: Hong & Teo CQG(05) [new form];
    Griffiths & Podolský CQG(05)gq;
    Bini et al JMP(08)-a1408 [massless field perturbations].
  @ Other generalizations:
    Podolský & Griffiths GRG(01)gq/00 [null limit, unbounded acceleration];
    Podolský CzJP(02)gq [in anti-de Sitter spacetime];
    Dias & Lemos PRD(03)ht [extremal limits];
    Willeman & Beke PRD(10)-a1001 [expanding perfect fluids];
    Culetu JPCS(17)-a1409 [regular].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 9 jan 2021