|  Classical General Relativity | 
In General
  > s.a. einstein's equation; history of gravitational physics.
  * Motivation: (i) Inadequacy of
    the concept of (global) inertial frames, and need to formulate a theory that
    does not have preferred reference frames; (ii) Inconsistency of Newtonian gravity
    with special relativity and indications that gravity can be associated with
    (geometrical) properties of spacetime; (iii) Equivalence principle.
  * Idea: Gravity is a property
    of spacetime; Matter curves spacetime, and test bodies follow geodesics in
    the curved geometry.
  * Formalism: The gravitational
    field is a metric tensor on a manifold with only a topology and differentiable
    structures as background; The theory comes out also if one looks for a self-interacting
    massless spin-2 field with stress-energy as source; But this will not work for quantum
    gravity, and has trouble with things like topology.
  @ Early papers: Clifford PCPS(1876),
    1885 [precursor, intuitive];
    Einstein & Grossmann ZMP(13),
    ZMP(13),
    ZMP(14);
    Einstein SPAW(15),
    AdP(16),
    AdP(18);
    Schouten VKAA(18) [coordinate-free description].
  @ Relations, "origin" of general relativity:
    von Borzeszkowski & Treder FP(96)
      [Mach's principle vs general relativity, Einstein-Grossmann and Einstein-Mayer theories];
    Padmanabhan  MPLA(02)ht,
    ASS(03)gq/02-conf [thermodynamics];
    Deser GRG(10) [self-interacting spin-2 field];
    Wiesendanger JModP(14)-a1308 [as the classical limit of a gauge theory of volume-preserving diffeomorphisms];
    Kobe & Srivastava a1309 [from Newtonian gravity];
    Barceló et al PRD(14)-a1401 [graviton self-interactions and the cosmological constant];
    Hertzberg AHEP(17)-a1610,
    Hertzberg & Sandora JHEP(17)-a1702 [causality and quantum consistency];
    > s.a. gravitational thermodynamics.
  @ Approaches: Sachs 82;
    Mészarós ASS(89);
    Padmanabhan IJMPD(04) [as elasticity of spacetime];
    Caticha AIP(05)gq [from statistical thermodynamical concepts];
    Böhmer & Downes IJMPD(14)-a1405 [from continuum mechanics];
    Krasnov 20;
    > s.a. formulations.
   Approaches: see canonical; initial-value
    formulation; modified versions [and limitations];
    quantum gravity; semiclassical.
 Approaches: see canonical; initial-value
    formulation; modified versions [and limitations];
    quantum gravity; semiclassical.
Dynamical Aspects, Results and Effects > s.a. 3D general relativity.
  * Idea: Study of the
    dynamics of the theory, including exact solutions and approximation
    methods, the initial value and canonical formulation, gravitational
    waves and radiation; And global properties of spacetime, including
    its topology, causal structure, and singularities.
  @ Stability: Horowitz & Perry GRG(83);
    Abramo et al PLB(02)gq [with scalar].
  @ Related topics:
    Gibbons FP(02) [maximal tension principle];
    Jezierski & Kijowski gq/05 [unconstrained degrees of freedom];
    Chruściel et al BAMS(10)-a1004 [recent mathematical results];
    Coley GRG(19)-a1807 [mathematical, open problems].
   Formalism, related areas: see action;
    causality; gauge transformations;
    geometry; numerical relativity;
    linearization; tensor decomposition.
 Formalism, related areas: see action;
    causality; gauge transformations;
    geometry; numerical relativity;
    linearization; tensor decomposition.
   Phenomenology: see cosmology;
    experiments and tests; gravitating
    bodies; locality; phenomenology [including Newtonian limit];
    radiation.
 Phenomenology: see cosmology;
    experiments and tests; gravitating
    bodies; locality; phenomenology [including Newtonian limit];
    radiation.
  > Tools, techniques:
    see duality; energy-momentum; Fermat's
    Principle; observables; orbits of gravitating bodies;
    singularities; solutions.
  > Applications: see GPS.
References
  @ I: Durell 60;
    Gamow 62;
    Bondi 64;
    Russell 69;
    Geroch 78;
    Clarke 79;
    in Lightman 86, 58-69;
    Bergmann 87;
    Fang & Chu 87;
    Mook & Vargish 87;
    issue NatGeo(89)may;
    Gribbin NS(90)feb;
    Wheeler 90;
    Zee 90;
    Taylor & Wheeler 92;
    Wald 92;
    Will 93;
    Fritzsch 94;
    Hawking & Penrose 96;
    Dadhich gq/01-ln;
    Bassett & Edney 02;
    Vishveshwara 06;
    Cooperstock & Tieu 12;
    Egdall 14;
    Will & Yunes 20.
  @ IIa: Schutz 03;
    Bertschinger & Taylor AJP(08)feb;
    Lopis & Tegmark a0804
    + YouTube;
    Hraskó 11;
    Natário 11;
    Price AJP(16)aug [spacetime curvature].
  @ IIb: Eddington 29;
    Lieber 36;
    Sciama 69;
    Frankel 79;
    Bose 80;
    Price AJP(82)apr;
    Naber 88;
    Kenyon 90;
    de Felice & Clarke 90;
    Hughston & Tod 91;
    d'Inverno 92;
    Harpaz 92;
    Mould 94;
    Martin 96;
    Sartori 96;
    Ludvigsen 99;
    Ellis & Williams 00;
    't Hooft 00;
    Taylor  & Wheeler 00;
    Kogut 01 [and special relativity];
    Hartle 02;
    Foster & Nightingale 06;
    Hobson et al 06;
    Walecka 07;
    Ferraro 07;
    Ryder 09;
    Schutz 09
      (student manual Scott 16);
    Cheng 10;
    Franklin 10;
    Narlikar 10;
    Lambourne 10;
    Grøn & Næss 11;
    Moore 12
      [workbook, r AJP(13)apr,
      PT(14)may];
    Steane 12;
    Gasperini 13 [and other theories];
    Zee 13;
    Blecher 16;
    Böhmer 16;
    Bambi 18;
    Guidry 19;
    Fleury 19;
    Blecher 20;
    Kanti Dey & Sen a2009 [intro].
  @ II, cosmology emphasis:
    Burke 80;
    Dalarsson & Dalarsson 05;
    Grøn & Hervik 07.
  @ II, other emphasis: Van Bladel 84 [practical];
    Stephani 04 [formal];
    Ohanian & Ruffini 13 [Newtonian, experiment];
    Dray 14 [differential forms].
  @ III: Bolton 21;
    Birkhoff 23;
    Eddington 37;
    Pauli 58;
    Fock 59;
    Born 62;
    Anderson 67;
    Robertson & Noonan 68;
    Synge 71;
    Møller 72;
    Weinberg 72;
    Hawking & Ellis 73;
    Misner, Thorne & Wheeler 73;
    Atwater 74;
    Papapetrou 74;
    Pathria 74;
    Adler et al 75;
    Bowler 76;
    Lord 76;
    Sachs & Wu 77;
    Mercier 79;
    Rindler 80;
    Treder et al 80;
    Wald 84;
    Straumann 84;
    Gasperini & de Sabbata 86;
    Martin 88;
    Stephani 90;
    Kopczyński & Trautman 91;
    Logunov 91;
    Stewart 91;
    Leite Lopes 94 [not recommended];
    Tourrenc 97;
    Kriele 99;
    Carroll 03;
    Woodhouse 07;
    Hájíček 08;
    Padmanabhan 10;
    Sharan 10;
    DeWitt 11 [1971 lecture notes];
    Das 11;
    Straumann 13;
    Frè 13 [and gravity];
    Choquet-Bruhat 14;
    Gray 19 [student guide];
    Chruściel 19;
    Natário 21 [mathematical].
  @ III, cosmology emphasis: McVittie 65;
    Hakimi 98;
    Plebański & Krasiński 06 [and solutions];
    Rindler 06;
    Grøn & Hervik 07.
  @ III, astrophysics emphasis:  Straumann 04;
    Lopis & Tegmark a0804;
    Poisson & Will 14;
    Ferrari et al 21.
  @ III, other emphasis: Carmeli 77 [group theory];
    Saleem & Rafique 92 [particle physics];
    Ciufolini & Wheeler 95 [tests];
    Carmeli 01 [gauge theory];
    Poisson 04 [tools];
    Khriplovich 05 [effects];
    Choquet-Bruhat 09,
    Das & DeBenedictis 12 [mathematical];
    Barrabès & Hogan 13 [gravitational waves, spinning particles, black holes];
    in Thorne & Blandford 15;
    Soffel & Han 19 [applications];
    Compère 19
      [surface charges, 3D, asymptotic flatness, rotating black holes].
  @ Pedagogic:
    Brill & Perisho AJP(68)feb [RL];
    Roman AJP(86)feb;
    Morris & Thorne AJP(88)may;
    Francisco  & Matsas AJP(89)apr [infinite straight string];
    Adler & Brehme AJP(91)mar [uniform field];
    Chandler S&E(94) [4D curved spacetime];
    Rindler AJP(94)oct [general relativity before special relativity];
    Levrini S&E(02);
    Drake AJP(06)jan-gq/05 [equivalence principle];
    Hartle AJP(06)jan-gq/05 [approach];
    Nandi et al EJP(06)gq/05 [orbits in general relativity and Newtonian gravity];
    Wald AJP(06)jun-gq/05 [RL];
    Kozyrev a0712;
    Kraus EJP(08) [visualizations];
    Hobson AJP(08)jul;
    Le Tiec CQG(12)-a1202 [orbits and Killing vectors, covariance, etc];
    Christensen & Moore PT(12)jun [teaching general relativity to undergraduates];
    Dadhich CS-a1206;
    Lynden-Bell & Katz MNRAS(14)-a1312 [thought experiments with a cylinder];
    Zahn & Kraus EJP(14)-a1405 [undergraduate level];
    Mathur et al AJP(17)sep-a1609
      [merging black holes and gravitational waves in terms of introductory physics];
    Pössel a1901-conf [various kinds of models];
    > s.a. Reference Frames.
  @ Problems: Lightman et al 75;
    Bolotin & Tanatarov a1310 [cosmological horizons].
  @ Short reviews:
    Bargmann RMP(57);
    Synge in(64);
    Trautman in(65);
    Thirring GRG(70);
    Ehlers in(73);
    Trautman in(73);
    Schücking GRG(76);
    Markov in(84);
    Canuto & Goldman in(94)-a1509;
    Ellis CQG(99)A;
    Damour a0704-proc;
    Iorio Univ(15)-a1504;
    Padmanabhan CS-a1512 [100 years];
    Scheel & Thorne PU(14)-a1706 [geometrodynamics].
  @ Lecture notes: Fock RMP(57);
    Feynman APP(63);
    Plebański pr(64);
    Geroch ln;
    Buchdahl 81;
    Carroll gq/97-ln
      [site];
    van Holten FdP(97)gq [phenomenology];
    Baez & Bunn AJP(05)jul-gq/01 [intro];
    Popławski a0911 [and coupled fields];
    Horowitz CQG(11)-a1010-GR19 [applications to condensed-matter physics];
    Akhmedov a1601;
    Das Gupta a1604 [for pedestrians];
    Menotti a1703 [field theory emphasis];
    Compère & Fiorucci a1801 [surface changes, holographic features, BMS group];
    Fleury a1902-ln;
    Natário a2003 [mathematical];
    Bilenky a2010.
  @ Other references: Fay & Gautrias Scient(15)-a1502 [arXiv papers].
  @ Collections: Witten 62;
    Kuper & Peres 71;
    Kilmister 73;
    Suppes 73;
    Esposito & Witten 77;
    Bonnor et al 85;
    Rindler & Trautman 87;
    Perjés 88;
    Matthews GRG(92);
    Chandrasekhar 93;
    Chruściel 97;
    Iyer & Bhawal 99;
    Ciufolini & Matzner 10;
    Ashtekar et al a1409,
    Ni 16,
    Vasconcellos 16 [centennial overviewa].
Conceptual / Philosophical Aspects > s.a. Interpretation
  of a Theory; spacetime and models [axioms].
  @ Philosophical / axiomatic: Grünbaum 68;
    Graves 71;
    Angel 80;
    Torretti 83;
    Zahar 89;
    da Costa et al IJTP(90);
    Robinson 90;
    Sachs 93;
    Andréka et al a1101
      [as a hierarchy of theories in the sense of logic, Vienna Circle approach];
    Sid-Ahmed a1112;
    Andréka et al a1310 [complete axiom systems].
  @ Conceptual: Bergmann in(71),
    in(90);
    Malament gq/05-in;
    Pitts SHPMP(06)gq/05 [absolute elements];
    Barbour 06;
    Verozub a0911;
    Romero a1301-in [ontology];
    Pietschmann a1604
      [general relativity as a partial return to Aristotle's "natural motion"];
    Coley & Wiltshire PS(17)-a1612 [the theory and its limits];
    Vassallo EJPS(20)-a1910
      [dependence relations between between material and spatiotemporal structures];
    Romano & Furnari 19 [foundations];
    > s.a. Counterfactuals; Covariance.
Online Resources
  > s.a. David Brown's Physics Unsimplified;
  Wikibooks index page.
  @ I: Ute Kraus' Space-Time Travel site [visualization];
    summary space(15)apr;
    Future Learn online course.
  @ II / III: Sean Carroll's lecture notes;
    David Waite's modernrelativity;
    Marc Favata's  gravitational-wave resources;
    Marcus Hanke's maths overview.
"Spacetime tells matter how to move; matter tells spacetime how to curve." — MTW
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 may 2021