|  Geometry of Friedmann-Lemaître-Robertson-Walker Spacetimes | 
Metric
  > s.a. FLRW spacetimes; cosmologies
  and relativistic cosmological models [geodesics];
  spherical symmetry.
  * Idea:
    A homogeneous and isotropic metric, characterized by one of three type
    of 3D constant curvature spatial geometries (spatially open k
    = −1, spatially flat k = 0, or spatially closed k
    = 1), and an arbitrary function a(t) representing the
    fiducial size of the universe at time t.
  * Proper time gauge:
    The line element is of the form
    where f 2(χ)
    = sin2χ
    if k = 1, χ2
    if k = 0, and sinh2χ
    if k = −1.
  * Conformal gauge: The line
    element is of the form (using the same definitions for f(χ))
  * Singularities:
    For k > 0, a point; For k ≤ 0,
    an infinite manifold; > s.a. singularities [metric extension].
  * Useful quantities:
    The Hubble expansion factor, defined as H:= a·/a;
    It satisfies \(1\over6\)R = \(\ddot a\)/a + H2
    = k/a2.
  @ Metric and coordinates: Rindler GRG(81);
    Lachièze-Rey A&A(00)ap [embedding in 5M];
    Ibison JMP(07) [conformal forms],
    a0704 [static form];
    Grøn & Johannesen a0911-wd [conformally-flat spacetime coordinates].
  @ Singularities: Gruszczak a1011 [differentially singular boundary];
    het Lam & Prokopec a1606 [non-singular past-geodesically incomplete spacetimes];
    Ling a1810
      [k = −1 inflationary FLRW spacetimes, the big bang is a coordinate singularity].
  @ Extending the spacetime: Schröter a0906;
    Stoica IJTP(15)-a1112;
    Belbruno CMDA(13)-a1205;
    Stoica IJTP(16),
    comment Fernández-Jambrina IJTP(16)-a1603;
    Gielen & Turok PRD(17)-a1612 [Feynman propagator].
Connection > s.a. geodesics; holonomy;
  Raychaudhuri Equation; relativistic
  cosmological models [geodesics].
  * In conformal time gauge:
    The non-equivalent, non-vanishing components of the metric
    connection / Christoffel symbols are
Γ000 = Γ011 = a·/a 
Γ122 = −f f '
Γ101 = Γ202 = Γ303 = a·/aΓ022 = f 2 a·/a 
Γ133 = −f f ' sin2θ
Γ212 = Γ313 = f '/fΓ033 = f 2 sin2θ a·/a 
Γ233 = −sin θ cos θ
Γ323 = cot θ .
Other Geometric Quantities and Topics
  > s.a. horizons; types of singularities
  [including sudden singularities]; world function.
  * Scalar curvature:
    Using conformal time,
R = 6 \(\ddot a\)/a − 2 (2ff '' + f '2 − 1)/(af)2 .
  @ References:
    Ellis & van Elst gq/97-fs [geodesic deviation];
    Chen & Van der Veken JMP(07) [non-degenerate surfaces];
    Goulart & Novello G&C(08) [Weyl tensor, stability];
    Cunningham et al PRD(17)-a1705 [exact geodesic distances].
  > Related topics:
  see bianchi models.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 19 jul 2019