|  Finsler Geometry | 
In General
  > s.a. Gauss-Bonnet Theorem; lie group.
  * Idea: "Riemannian geometry without
    the quadratic restriction" (S S Chern); The concept was included in Riemann's 1854
    memoir, but was studied in detail for the first time only in Finsler's 1919 thesis; It
    can be locally anisotropic, and has been used to model/explain anisotropy in cosmology.
  $ Def: A Finsler geometry (manifold) is
    a differentiable manifold M with a Finsler norm, a positive-definite, smooth
    function F: M → \(\mathbb R\) which is homogeneous of degree 1
    and subadditive, i.e., F(λv) = λ F(v)
    and F(v+w) ≤ F(v) + F(w).
  @ General references:
    Busemann BAMS(50);
    Rund 59 [historical
      preface];
    Asanov 85;
    Matsumoto 86;
    Beil IJTP(89) [class of metrics];
    Bejancu 90;
    Chern NAMS(96);
    Antonelli 99;
    Bao et al 00;
    Shen 01;
    Antonelli ed-03 [handbook];
    Chern & Shen 05;
    Tamássy DG&A(08) [relationship with metric spaces];
    Szilasi 13 [connections and sprays];
    Shen & Shen 16 [intro].
  @ Related topics: Kozma et al RPMP(06) [twisted products];
    Bejancu & Farran RPMP(06) [tangent bundles, positive constant curvature];
    Mo DG&A(09) [non-Riemannian invariant H];
    Kouretsis et al MMAS(14)-a1301-proc [parallel displacements].
  > Online resources:
    M Dahl's page;
    MathWorld page;
    Wikipedia page.
   Related topics:
    see finsler geometry and physics [including Finsler spacetime].
 Related topics:
    see finsler geometry and physics [including Finsler spacetime].
Additional Structure and Special Cases > s.a. spacetime boundaries.
  * Randers spaces RFn:
    Finsler spaces Fn = (M, α + β)
    equipped with the Cartan non-linear connection, introduced by Roman S Ingarden.
  * Ingarden spaces IFn:
    Finsler spaces Fn = (M, α + β)
    equipped with the  Lorentz non-linear connection, introduced by Radu Miron.
  * Berwald spaces: A Finsler space
    is of Berwald type if its Chern-Rund connection defines an affine connection on
    the underlying manifold; For positive-definite metrics Szabo's metrizability theorem
    states that a Berwald space is affinely equivalent to a Riemann space, meaning that
    its affine connection is the Levi-Civita connection of some Riemannian metric; This
    result does not extend to indefinite-signature metrics, whose affine structure is
    instead that of a metric-affine geometry with vanishing torsion; > s.a. Encyclopedia of Math
    page.
  @ Spinors, connections:
    Vacaru in(96)dg;
    Vargas & Torr GRG(96);
    Solov'yov  & Vladimirov IJTP(01)mp [N-spinors];
    Ikeda RPMP(05);
    Youssef et al JEMS-a0805 [torsion and curvature of a connection];
    Minguzzi IJGMP(14)-a1405 [connections].
  @ Homogeneous manifolds:
    Deng & Hou JPA(04),
    JPA(06);
    Latifi & Razavi RPMP(06).
  @ Isometries: Li et al a1001 [Killing equation];
    Habibi & Razavi JGP(10) [weakly symmetric];
    Hohmann JMP(16)-a1505 [symmetry-generating vector fields];
    Gallego Torromé & Piccione HJM-a2007 [Lie group structure].
  @ Randers spaces:
    Cheng & Shen 12;
    Rafie-Rad IJGMP(13) [Riemann curvature];
    Brody et al JGP(16)-a1507 [geodesics, Riemannian geometry approach];
    Gibbons a1708
      [and null geodesics in a stationary Lorentzian spacetime and other relationships].
  @ Special cases: Miron RPMP(04),
    RPMP(06) [Ingarden spaces];
    Mo & Yang DG&A(06) [isotropic S-curvature];
    Chen et al JGP(13) [a class of Ricci-flat Finsler metrics];
    Youssef & Soleiman a1405 [Finsler spaces of scalar curvature],
    a1610 [more special types].
  @ Related topics: Józefowicz & Wolak DG&A(08) [Finslerian foliations of compact manifolds are Riemannian];
    Kothawala GRG(14)-a1406 [intrinsic and extrinsic curvatures].
Generalizations > s.a. non-commutative geometry;
  Riemann-Cartan Structure; types of fiber bundles.
  @ Pseudo-Finsler structures: Skákala & Visser IJMPD(10)-a0806,
    JPCS(09)-a0810 [and birefringent optics],
    JGP(11) [and bimetric spacetimes].
  @ Finsler-Lagrange spaces: Vacaru a0707,
    JGP(10)-a0709,
    IJGMP(08)-a0801,
    Sigma(08)-a0806 [rev, general relativity and string theory];
    Miron RPMP(06).
  @ Other generalizations:
    Tanaka PhD-a1310 [Kawaguchi geometry];
    Caponio et al a1407 [wind Finslerian structure].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2020