Black
Holes |

**In General** > s.a. history of general relativity; {#einstein}.

* __Early idea__: Calculation
by clergyman John Michell in 1784 for a situation in which the escape speed equals *c*
(however, because of addition of velocities, in Newtonian theory light emitted by a moving source could escape).

* __History__: The Schwarzschild
solution was found early on, but before the work of Oppenheimer & Snyder
black holes were not thought of as real astrophysical objects; The term *black
hole* was introduced by Wheeler, in a 29 dec 1967 ΣΞ-ΦBK lecture.

$ __Definition__: A strongly
asymptotically predictable spacetime *M* contains a black hole if *M* is
not in *J*^{–}(\(\cal I\)),
and *M* \ *J*^{–}(\(\cal I\))
is the black hole region; In non-asymptotically flat spacetimes the notion
seems to be physically less relevant, and many theorems would not hold.

* __Remark__: Classically
a black hole can be thought of as a general relativity soliton, but not quantum
mechanically, due to their radiation and instability.

@ __I / II__: Penrose SA(72)may; Taylor 73;
Peters AS(74);
Asimov 77; Calder 77;
in Gribbin 77; Hawking SA(77)jan;
Greenstein 83; Luminet 92; Thorne 94; Ferguson 96; Musser SA(03)jul; Melia 09; Begelman & Rees 09; Al-Khalili 11;
news ns(14)feb [debate on information, firewals, and all that].

@ __II__: Ruffini & Wheeler PT(71)jan;
Droz et al PW(96)jan; Luminet LNP(03)ap/98;
Blandford & Gehrels PT(99)jun;
Raine & Thomas 14.

@ __Books, reviews__: DeWitt^{2} ed-73 [especially
Hawking, Carter intro]; in Misner et al 73; Wheeler in(73);
Chandrasekhar CP(74),
reprint CP(09);
Bekenstein GRG(82)
[and everyday physics]; Chandrasekhar 83; Novikov & Frolov
89; Strominger ht/95-ln;
Townsend gq/97-ln;
Wadia gq/97;
Bekenstein in(00)gq/98-ln;
Frolov & Novikov
98; Horowitz & Teukolsky RMP(99)gq/98;
Wald ed-98; Fré et al
00; Hayward gq/00-MG9;
Chruściel LNP(02)gq;
Bekenstein ap/04-ln
[primer, including astrophysics]; Booth CJP(05)gq [definitions,
boundaries]; Papantonopoulos ed-09; Visser PoS-a0901;
Joshi a1104-BASI [open issues and challenges];
Frolov & Zelnikov 11; Bronnikov & Rubin 12;
Hayward 13;
Bolotin et al a1305 [137 problems].

@ __Refs__: *Black Holes 70–74* London: Inspec 74; Stephani gq/03 [Laplace
and Schiller]; Gallo & Marolf AJP(09)-a0806.

> __Related topics__:
see bose-einstein condensates; Irreducible
Mass; Mass Inflation; Smarr
Formula; Superradiance.

__Geometrical properties__: see black-hole
geometry and topology [including inequalities, interior, membrane paradigm]; censorship;
horizons; singularities.

__Other properties__: see black-hole phenomenology; matter near black holes;
particle statistics;
black-hole radiation and thermodynamics [including phase transitions].

**Types of Black Holes and Alternatives**

* __Kerr black hole hypothesis__: The assumption that the astrophysical black-hole
candidates are the Kerr black holes predicted by general relativity; > s.a. phenomenology.

* __Alternatives__: Horizonless
objects that can mimick many black hole properties are gravastars,
boson stars, wormholes and superspinars (objects spinning faster that the general-relativistic
limit); Fermion balls have been ruled out.

@ __General references__: Verozub & Kochetov AN(01)-a0810 [stability
of supermassive objects]; Chapline ap/05-TX
[dark energy stars]; Zaslavskii PLB(06)gq;
Schild et al AJ(06)ap [MECOs
as quasar engines]; Lemos & Zaslavskii PRD(07)-a0707 [quasiblack holes]; Cardoso et al PRD(08)-a0709 [instabilities];
Verozub NCB(08)-a0806 [in
modified gravity theory]; Visser et al PoS-a0902;
Barceló et al AIP(09)-a0909 [semiclassical
collapse]; Mottola APPB(10)-a1008 [condensate stars]; Corda et al JoC(11)-a1111 [without horizons and singularities]; Lemos UZKU-a1112-proc [quasiblack holes]; Barceló et al Univ(16)-a1510 [modified geometries]; > s.a. astronomical
objects [boson stars, quark stars]; Gravastars;
gravitational collapse.

@ __Black stars__:
Barceló et al SA(09)oct; Vachaspati IJMPD(16)-a1611-GRF [gravitational waves and GRBs].

@ __Arguments against black holes__: Moffat ap/97 [galactic
centers];
Robertson ap/98/PASP, ap/98;
Loinger ap/98;
Logunov et al PPN(06)gq/04;
Gershtein
et al gq/06;
Marshall a0707;
Petrovay AIP(08)-a0707 [counterargument
to Vachaspati et al]; Pinyol Ribas & López Aylagas a1007 [never-stationary
gravitational
collapse]; Hess et al IJMPA(10)
[dark energy in pseudo-complex extension]; Kiselev et al TMP(10)
["physical inconsistency" of the Schwarzschild and Kerr solutions]; Marshall a1103 [collapse stops before the Schwarzschild radius]; Logunov & Mestvirishvili TMP(12) [from Hilbert's causality principle and the equations of general relativity]; Mersini-Houghton & Pfeiffer a1409 + news hp(14)sep [Hawking radiation back-reaction]; > s.a. MegaEssays page; Relativistic Theory of Gravitation [no gravitational collapse].

__Related topics__: see black-hole analogs
and doubles; black-hole types; quantum black holes; solutions; uniqueness
and hair.

**Other References** > s.a. Antigravity; particle
effects and models;
wormholes.

* __Computational complexity__: 1970s, Jacob Bekenstein showed that black holes set a theoretical maximum on entropy or information storage for any physical system governed by quantum mechanics; 2016, A Brown et al conjecture that black holes produce complexity at the fastest possible rate allowed by physical laws, by identifying computational complexity with the action and showing that it saturates the Margolus-Levitin bound.

@ __Initial-value problem__: Bishop et al PRD(98)gq/97 [multi-black
hole];
Eardley PRD(98)gq/97;
Dain et al PRD(02)gq [spinning,
conformally flat]; Brandt et al CQG(03)gq/02 [distorted].

@ __Use as computers__: Lloyd Nat(00)aug;
Ng PRL(01)gq/00, ht/00-proc
[limits]; Hitchcock gq/01 [and
universe information]; Lloyd & Ng SA(04)nov; Dvali & Panchenko a1601; Dvali et al a1605 [universality]; Brown et al PRL(16) + Hartman Phy(16) [black holes saturate the speed limit complexity growth].

@ __Related topics__: Wald AP(74), PRD(74)
[in a uniform magnetic field]; Loustó & Sánchez PLB(88),
IJMPA(89)
[back-reaction]; Davies & Moss CQG(89)
[through a black hole]; Mellor & Moss PLB(89)
[charged black holes in de Sitter space, and wormholes]; Mitra ap/04 [???];
Rabinowitz in(05)ap/04 [paradoxes];
Lemos in(06)gq/05
[and fundamental physics]; Goldberger & Rothstein GRG(06)ht [tower
of gravity theories]; Preti FP(09)
[validity of Michell-Lapace argument]; Zhang a1003-ch [mathematical,
physical, and
astrophysical black holes]; Helfer a1105-conf [problematic issues]; Romero a1409-ch [conceptual].

**Online Resources** > see Astronomy Today article;
hubblesite.org site;
scienceface.org site; Simulating eXtreme Spacetimes site; Hawking's Reith Lecture.

main page – abbreviations – journals – comments – other
sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified
13 nov 2016