Gravitational Collapse  

In General
* Note: Unless otherwise specified, in this page gravitational theory is described by 4D general relativity.
* Outcome: Collapse will in general lead to some singularity, either a black hole or a naked singularity, as indicated first by the Oppenheimer-Snyder solutions and later more generally (without symmetry assumptions) by the singularity theorems.
* History: Einstein [@ AM(39)] did not believe that stars could collapse to singularities; After the early 1960s, work on gravitational collapse was divided into two branches, horizons and astronomical effects, and nature of singularities.
* Time scale: Collapsed objects should settle to their equilibrium configuration in a time of the order of the light crossing time (and dependent on the spin of the perturbation).
blue bullet Quantum aspects: see models in canonical quantum gravity; spacetime geometry in quantum gravity.

Spherical Collapse Solutions > s.a. models in canonical general relativity; numerical models; types of singularities; Vaidya Metric.
* Oppenheimer-Snyder: A family of solutions, representing the collapse of a uniform-density dust cloud (star with zero pressure); > s.a. PRF(04).
@ General references: Christodoulou CPAM(91) [theory]; Dwivedi & Joshi CMP(94) [with matter]; Wagh ap/02 [and accretion, in exact general relativity]; Joshi & Goswami PRD(04)gq/02 [initial data]; Wagh et al gq/02; Lasky & Lun gq/06-MGXI, PRD(07)gq/06 [general fluids]; Sharif & Iqbal MPLA(09)-a0812.
@ Oppenheimer-Snyder: Oppenheimer & Snyder PR(39); Misner et al 73, 851–856; Ilha & Lemos PRD(97) [even dimensions]; Casadio PRD(98)gq [Hamiltonian]; Mitra FPL(00)ap/99 [??]; Marshall a0907 [criticism, no black hole]; Bengtsson et al PRD(13)-a1306 [trapped surfaces]; > s.a. perturbations in general relativity.
@ Scalar field: Burko & Ori PRD(97) [massless, numerical]; Ziprick & Kunstatter PRD(09)-a0812 [massless, Painlevé-Gullstrand numerical]; Ganguly & Banerjee Pra-a1210; Kommemi CMP(13) [charged, global structure of spacetime]; Torres & Alcubierre GRG(14)-a1407 [charged]; Guo & Joshi PRD(15)-a1507 [interior dynamics near the singularity].
@ Scalar field + cosmological constant: Husain et al CQG(03)gq/02 [spherical, massless].
@ Dust + cosmological constant: Markovic & Shapiro PRD(00)gq/99 [homogeneous]; Lake PRD(00)gq [inhomogeneous]; Deshingkar et al PRD(01)gq/00; Cai & Wang PRD(06) [dark energy].
@ Other fluid: Husain PRD(96)gq/95; Dadhich et al IJMPA(05) [higher-dimensional]; Gonçalves & Villas da Rocha IJMPD(08) [dark energy, with kinematic self-similarity]; Andréasson et al QAM-a0812 [Einstein-Vlasov]; Sharif & Abbas MPLA(09)-a0905 [with electromagnetic field and cosmological constant]; > s.a. Chaplygin Gas.

Types of Matter and Outcomes of Collapse > s.a. critical collapse; Hoop Conjecture; wormholes \ astronomical objects; gravitating bodies.
* Carter-Israel conjecture: The end-state of the gravitational collapse of matter is a Kerr-Newman black hole.
@ Black holes: Christodoulou CMP(87); Hod & Piran GRG(98)gq/99 [charged scalar, development of singularity and interior]; Hall & Hsu PRL(90); Loinger ap/00/NCB [against!]; Giambò et al CQG(02), Andréasson et al AM(11)-a0706 [spherical, sufficient condition]; Bambi et al a0908-proc [alternatives to Carter-Israel conjecture]; > s.a. black-hole formation and phenomenology.
@ Singularities: Harada et al PRD(00)gq, PRD(00)gq [explosive radiation]; Ghosh & Dadhich PRD(01)gq [higher-dimensional Vaidya]; Giambò et al CQG(03), CQG(03); Goswami et al PRD(04)gq [spherical]; Joshi et al IJMPD(12)-a1107 [genericity of black holes and naked singularities]; Bambi et al PRD(13)-a1305 [singularity avoidance with quantum-gravity motivated effective density]; Bambi et al PLB(14)-a1402 [singularity avoidance from four-fermion interaction]; > s.a. censorship.
@ Matter shells: Kuchař CzJP(68) [charged shell]; Gibbons CQG(97)ht [and isoperimetric inequality]; Cho et al ht/00 [magnetic shell].
@ Radiation: Ruffini & Vitagliano IJMPD(03)ap/02 [energy production]; Calogeracos PLA(04)gq [spherical, spectrum]; Ruffini et al IJMPD(05)gq/04 [electromagnetic radiation].
@ Fluid: Goswami & Joshi CQG(04)gq [barotropic perfect fluid]; Herrera et al IJMPD(09)-a0804 [viscous, dissipative]; Ziaie et al EPJC-a1305 [Weyssenhoff fluid, strong curvature naked singularities]; Herrera et al PRD(14)-a1404 [anisotropic dissipative fluid, axisymmetric].
@ Other matter: Gibbons & Steif PLB(93)gq [fermion production]; Jhingan & Magli PRD(00)gq/99 [particle clusters]; Sorkin & Piran PRD(01)gq/00 [charged pair creation]; Adler AJP(05)dec-gq [simple light and pfluid models]; Germani & Tsagas PRD(06) [magnetized Tolman-Bondi]; Lasky & Lun EAS(08)-a0711 [plasma]; > s.a. canonical general relativity models [shells].

References > s.a. numerical models.
@ General: Bergmann PRL(64); Chiu PT(64)may [radio galaxies]; Harrison et al 65; Misner in(69); Penrose RNC(69); Christodoulou PhD(71), CMP(84); Price PRD(72), PRD(72) [perturbations]; Boulware PRD(73); Penrose in(78); Wald JMP(79); Schoen & Yau CMP(83); Ori & Piran PRL(87); Nakamura et al PTPS(87); Christodoulou in(91); Eardley JMP(95) [vacuum]; Joshi gq/97-in, Pra(00)gq-in [rev], gq/04-in; Joshi 08; Herrera AIP-a0909; Malafarina Univ(17)-a1703 [rev].
@ Entropy of collapsing matter: Amarzguioui & Grøn PRD(05)gq/04; Greenwood JCAP(09)-a0811 [time evolution]; > s.a. entropy bounds.
@ Of inhomogeneities / fluctuations: Carr AJ(75); Herrera et al PLA(98)gq/97.
@ Cylindrical: Lemos PRD(98) [& toroidal]; Herrera & Santos CQG(05)gq [and gravitational waves]; Ganguly & Banerjee GRG(11)-a1105 [& planar and toroidal].
@ With cosmological constant: Ghosh PRD(00)gq/01 [null fluid, naked singularities]; Madhav et al PRD(05)gq [non-zero tangential p]; Garfinkle et al JHEP(12)-a1110 [massless scalar field, thermalization].
@ With cosmological constant, 2+1: Chan et al IJMPD(06)gq/05 [+ massless scalar]; Gutti CQG(05)gq [+ dust]; Mann et al PRD(09)-a0812 [rotating shell].
@ In higher dimensions: Debnath & Chakraborty MPLA(03), GRG(04), et al GRG(04), et al GRG(08); Yoo et al PRD(05)gq [5D, hoop conjecture, including numerical]; Sarwe & Saraykar gq/05; Goswami & Joshi PRD(07)gq/06 [any D, spherical]; Maier & Soares a0906 [D-branes]; Ghosh & Jhingan PRD(10)-a1004 [5D Einstein-Gauss-Bonnet, quasispherical]; Constantineau & Edery PRD(11)-a1103 [numerical, 4D and 5D, thermodynamics]; Taves et al CQG(12)-a1110 [D-dimensional Einstein-Gauss-Bonnet, Hamiltonian formulation].
@ Semiclassical: Barceló et al PRD(08)-a0712 [fate, questioning black-hole formation]; Ziprick & Kunstatter PRD(10)-a1004; Tippett & Husain PRD(11)-a1106 [scalar field interior, null fluid exterior]; Balakrishna et al FASS(16)-a1501 [dust sphere]; > s.a. black holes.
@ Related topics: Misner PR(65) [spherical, with escaping neutrinos]; Hod PRL(00) [rotating, radiative tail]; Joshi et al gq/03 [shear, outcome]; Vachaspati & Stojković PLB(08)gq/07 [and radiation]; Herrera & Barreto IJMPD(11)-a1010 [in comoving coordinates, post-quasistatic approximation]; > s.a. Gravastar.
> Related topics: see AdS-cft; branes; Chandrasekhar Limit; minkowski space [stability]; Phantom Fluid [3D]; regge calculus; sources of gravitational radiation.
> In other theories: see Gauss-Bonnet Gravity; higher-order gravity; hořava-gravity phenomenology; Horndeski Theory; lovelock gravity; modified lorentz symmetry [Einstein-aether theory]; MOND; Relativistic Theory of Gravitation; scalar-tensor theories.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 15 jun 2017