|  Mathematical Description of Chaos | 
In General > s.a. chaos; classical
  mechanics formalism [dynamical systems]; dimension.
  * Statistical methods:
    Usually statistical methods and entropy are considered applicable only to fully-chaotic
    systems, but they may be applicable also at the edge of chaos by using Tsallis'
    non-extensive generalizations.
  @ Methods:
    Sussman & Wisdom Sci(88)jul [power spectra];
    Schack & Caves in(97)qp [sensitivity to perturbations];
    Gilmore RMP(98) [topological, dissipative systems];
    Korsch & Leyes NJP(02) [delocalization and measure on phase space];
    Barrow & Levin n.CD/03 [test];
    Gottwald & Melbourne PRS(04) [test];
    Li & Zhang PLA(11) [for 2D Hamiltonian systems].
  @ Curvature and geodesic deviation:
    Szydłowski PLA(95) [N-body];
    Di Bari & Cipriani PSS(98)cd/97;
    Szczesny & Dobrowolski AP(99);
    Wu JGP(09).
  @ Statistical properties:
    Ornstein & Weiss BAMS(91).
  @ And entropy: Gu & Wang PLA(97);
    Latora et al PLA(00)cm/99 [rate of increase];
    Lissia et al cm/05-proc [Tsallis].
  @ And information theory: Kossakowski et al OSID(03)qp/04;
    Cafaro AIP(07)-a0810,
    CSF(09)-a0810,
    Cafaro & Ali EJTP(08)-a0810,
    PhyA(08)-a0810 [based on entropic dynamics];
    Cafaro PhD(08)-a1601.
Types of Chaos > s.a. Attractor [strange attractors];
  fractals [Cantor set].
  * Degree of chaoticity:
    From weaker to stronger, ergodic – mixing – Kolmogorov.
  * Origin of chaoticity:
    Local sensitive dependence on initial conditions, together with global folding
    of orbits; Can be continuously produced or in bursts (as in the billiard or
    Bianchi IX models).
  * Indicators: In low
    dimensions, Poincaré sections are a good qualitative indicator;
    In general, features of the power spectrum (~ square amplitude of Fourier
    transform in time) of one dynamical variable or fractal basins of attraction
    can be used, but Lyapunov exponents are quantitatively better.
  @ Hamiltonian systems:
    von Kempis & Lustfeld JPA(93);
    Zaslavsky Chaos(95) [and Maxwell's demon];
    Tang & Boozer PLA(97);
    Kandrup PRE(97)ap [2D, geometrical];
    Zaslavsky 04;
    Calogero et al JPA(05) [transition to irregular motion in terms of Riemann surfaces];
    Horwitz et al PRL(07)phy [in terms of curvature of metric].
  @ Indicators: Lukes-Gerakopoulos et al PhyA(08) [and Tsallis entropy, Average Power Law Exponent].
Soft / Perturbative Chaos > s.a. KAM Theorem;
  Mixing [including time scale]; Separatrix.
  * Idea: When perturbing
    an integrable system, if chaos sets in, it starts from local instabilities:
  - The KAM theorem says that for small
    perturbations most tori are undisturbed.
  - The Melnikov method finds some
    unstable places (homoclinic/heteroclinic orbits) where chaos might arise.
  - The Lyapunv exponents say how
    fast trajectories diverge locally.
  - Arnold diffusion is the stronger
    form of soft chaos.
  * Stochastic web: A thread-like
    region of chaotic dynamics in phase space generated by weak perturbations,
    discovered by Arnold.
  @ General references: Zaslavsky et al 91;
    Reichl 92;
    Burić et al JPA(94);
    Haller 99 [near resonance];
    Chandre & Jauslin PRP(02) [and renormalization];
    Nguyen Thu Lam & Kurchan JPA(14)-a1305 [integrable systems perturbed by stochastic noise].
  @ Stochastic web:  
    Soskin et al CP(10) [introductory review].
  @ Stochastic layer, width:
    Tsiganis et al JPA(99) [driven pendulum];
    Shevchenko PLA(08) [new estimation method].
  @ Homoclinic orbits:
    Glendinning & Laing PLA(96) [types, examples];
    Grotta Ragazzo PLA(97) [and diffusion];
    Yagasaki PLA(01) [infinite-dimensional systems];
    Dong & Lan PLA(14) [variational method];
    > s.a. kerr spacetime.
  @ Melnikov method:
    Bruhn PS(91) [higher dimensions];
    Soto-Treviño & Kaper JMP(96) [higher-order];
    Cicogna & Santoprete PLA(99) [non-hyperbolic points],
    JMP(00) [critical point at infinity];
    Bricmont et al CMP(01)mp [for field theory];
    Roy JGP(06)mp/05 [geometrical];
    Castilho & Marchesin JMP(09) [practical use];
    Gidea & de la Llave a1710 [general theory].
Other Concepts and Techniques > s.a. computational physics.
  @ General references:
    Skokos JPA(01) [alignment indices];
    Pingel et al PRP(04) [stability transformation];
    Saa AP(04)gq [limitations of local criteria];
    in Goldfain CSF(04) [fractional derivatives and diffusion];
    Contopoulos & Harsoula IJBC(08)-a0802 [stickiness].
  @ Geometric criteria: Mrozek & Wójcik T&A(05) [discrete systems];
    Li & Zhang JPA(10) [extension of HBLSL criterion and Dicke model];
    Li & Zhang PLA(11) [using the potential energy surface].
  > Related topics:
    see Catastrophe Theory; correlations;
    Poincaré Recurrence; Poincaré
    Section; Quasiperiodic Functions.
General References > s.a. classical mechanics;
  irreversibility; statistical mechanics.
  @ II, texts: Bergé et al 86;
    Cuerno et al AJP(92)jan;
    Shinbrot et al AJP(92)jun;
    Devaney 92; Moon 92;
    Abarbanel et al 93;
    Hilborn 94; Nagashima & Baba 98;
    Field & Golubitsky 09.
  @ III, reviews: Eckmann & Ruelle RMP(85);
    Amann et al ed-88;
    McCauley PS(88);
    Cvitanović ed-89;
    Holmes PRP(90);
    Ruelle PRS(90);
    Roberts & Quispel PRP(92).
  @ III, texts: Guckenheimer & Holmes 83;
    Hao 84; Zaslavsky 84;
    Sagdeev et al 88; Temam 88;
    Wiggins 88; Devaney 89;
    Rasband 89; Ruelle 89;
    Stewart 89; Arrowsmith & Place 90;
    Gutzwiller 90; Jackson 91;
    Froyland 92 [short]; Tufillaro et al 92 [including knots];
    Wiggins 92 [chaotic transport]; Mullin ed-93;
    Sklar 94 [conceptual]; Nicolis 95;
    Schuster 95; Baker & Gollub 96;
    Martelli 99 [discrete systems]; Ott 02.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 17 jan 2018