|  Markov Chains / Processes | 
In General > s.a. formulations of quantum mechanics.
  * Idea: A process in which a system
    evolves through a sequence of steps in some set of possible states, the probability
    of it going to a certain state in the next step depending only on the state it is
    in (no memory); It is characterized by a transition matrix T such that
    Tij ≥ 0 for all
    i, j and ∑i
    Tij = 1 for all j.
  *  History: Introduced
    by Markov in 1906, who just wanted to show that independence was not
    needed for the law of large numbers; An example he considered was the
    alternation of consonants and vowels in Pushkin's Eugene Onegin, which
    he described as a two-state Markov chain; Soon Poincaré was
    studying Markov chains on finite groups to study card shuffling; Today
    they are in all applied sciences, from population biology to communication
    networks, diffusion models, or social mobility.
  @ General references: Revuz 84;
    Norris 97 [II];
    Brémaud 99;
    Baldi et al 02 [and exercises];
    Borovkov & Hordijk AAP(04) [normed ergodicity];
    Stroock 05; 
    Lecomte et al JSP(07)cm/06 [thermodynamic formalism];
    Rivas et al NJP(10)-a1006 [master equations];
    van Casteren 10 [time-dependent strong Markov processes on Polish spaces];
    Shiraishi et al PRL(18)-a1802 [speed limit].
  @ Markov semigroups: Kolokoltsov JSP(07);
    Androulakis & Ziemke JMP(15)-a1406 [quantum Markov semigroups].
  @ Non-linear: Frank PLA(08);
    Frank PhyA(09) [chaos].
  @ Non-equilibrium: Lubashevsky et al PhyA(09) [superstatistical description].
  @ Numerical simulations:
    Stewart 94;
    Berg 04 [Monte Carlo];
    Brémaud 08;
    Diaconis BAMS(09);
    > s.a. montecarlo method.
  @ Evolution, examples: Cufaro Petroni & Vigier IJTP(79) [at the speed of light, and the Klein-Gordon equation];
    Albeverio & Høegh-Krohn RPMP(84) [fields];
    Schächter FP(87);
    Ibison CSF(99)qp/01 [1+1 Dirac equation];
    Turova JSP(03) [states = directed graphs];
    Duchi & Schaeffer JCTA(05) [jumping particles, and Catalan numbers];
    Lecomte et al PRL(05) [dynamic partition function, entropy];
    Grone et al JPA(08) [reversible, coarse-graining of stochastic matrix];
    Hou et al a0805 [and growing networks];
    Eliazar JPA(12) [Poissonian steady states];
    > s.a. gas [lattice gas].
  @ Path-space maximum entropy: Pavon & Ticozzi JMP(10)-a0811;
    Lee & Pressé JChemP(12)-a1206 [and n-th order Markov process master equation].
  @ Evolution, related topics: Costanza PhyA(11),
    PhyA(12) [derivation of deterministic evolution equations];
    Cubitt et al PRL(12) [solving the embedding problem];
    Jeknić-Dugić et al PRS(16)-a1510 [dynamical emergence of time-coarse-grained Markovianity];
    Baez & Courser TAC-a1710 [coarse-graining];
    Majid a2002 [quantum geometric interpretation].
  > Related topics: see Master
    Equation [including generalizations and non-Markovian dynamics]; noether theorem.
  > Online resources:
    see MathWorld page;
    Ryan Ward's page;
    Wikipedia page.
Related Processes
  > s.a. Martingales; random process [walk].
  @ Generalizations: Schreiber JSP(10)-a0905 [polygonal Markov fields];
    > s.a. stochastic processes [non-Markovian].
Quantum Markov Processes
  > s.a. Adiabaticity; open systems.
  @ General references: Dynkin 82;
    Ghirardi et al PRA(90);
    Marbeau & Gudder AIHP(90);
    Gudder & Schindler JMP(91);
    Accardi et al mp/04 [for spin chains];
    Tay & Petrosky PRA(07)-a0705 [thermal symmetry];
    Ibinson et al CMP(08) [robustness];
    Leifer & Poulin AP(08)
      [quantum graphical models of belief propagation];
    Patra & Brooke PRA(08)-a0808 [decoherence-free quantum information];
    Gudder JMP(08);
    Kraus et al PRA(08)-a0810 [and entanglement production];
    Faigle & Schönhuth a1011 [discrete];
    Vacchini et al NJP(11)-a1106 [in quantum and classical systems];
    Chruściński & Kossakowski JPB(12)-a1201 [Markovianity criteria];
    Fannes & Wouters a1204 [fermionic];
    Matsumoto a1212 [loss of memory and convergence];
    Jeknić-Dugić et al a1905 [no support for the ensemble interpretation];
    > s.a. dissipative systems.
  @ Non-Markovianity:
    Bhattacharya et al a1803 [resource theory].
  @ Measures of "Markovianity":
    Wolf et al PRL(08);
    Haikka et al PRA(11)-a1011;
    Alipour et al PRA(12)-a1203 [from quantum discord];
    Haseli et al QIP-a1406;
    Li et al PRP(18)-a1712 [hierarchy];
    > s.a. Loschmidt Echo.
  @ Semi-Markov processes:
    Breuer & Vacchini PRL(08);
    Utagi et al a2012 [non-Markovianity].
  @ Other generalizations:
    Tarasov TMP(09)-a0909 [fractional];
    Brown & Poulin a1206
      [Quantum Markov networks, and Gibbs states of Hamiltonians].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2020