Wormholes |
In General > s.a. causality
violations ["time machines"]; spacetime
topology; wormhole solutions.
* Idea:
Einstein-Rosen "bridges" or "handles," connecting either (i) different
universes or regions of one universe (relativists' view), or (ii) two
timelike related regions of a universe, representing the transient
phenomenon of emission and reabsorption of a baby universe (hep
theorists); Usually studied in the Euclidean regime.
* Motivation:
Important because they represent non-perturbative features of quantum
gravity; Interesting for two reasons,
- Macroscopic: Time travel (need exotic
matter –enormous negative pressures– but could be made stable);
- Microscopic: They fix the constants
of nature (Hawking – Consequences are unpredictable changes in the
constants, loss of information down the holes; Coleman – Consequence
is the big fix of the constants, in particular the cosmological constant;
Unruh – All wrong, one must include more paths in the calculations).
* Remark: Wormholes appeared
in an episode of "Star Trek: the Next Generation", 03.1990.
@ I: issue disc(89)jun; Halpern 92;
in Thorne 94; Al-Khalili 11;
news guard(13)jun [Kip Thorne and upcoming film];
news pbs(13)dec [microscopic channels between particles?].
@ II:
Redmount NS(90)apr28;
Clarke Nat(90);
Simon PW(94)dec;
Visser 95;
James et al AJP(15)jun [visualizing].
@ III: Bronnikov & Rubin 12.
Phenomenology > s.a. gravitational lensing;
neutron stars; particle models.
* Possible observation:
Bursts associated with their instability, or microlensing with unusual signature.
@ General references: Frolov & Novikov PRD(93) [as probes of black-hole interiors];
Kardashev et al IJMPD(07)ap/06;
Damour & Solodukhin PRD(07)-a0704 [mimicking black holes]; Dzhunushaliev et al
JCAP(11)-a1102 [inside a star];
news sn(11)mar [Folomeev's proposal of phantom-matter-supported stellar wormholes];
James et al AJP(15)-a1502 [visualization];
Dai & Stojkovic PRD(19)-a1910 [how to observe];
Simonetti et al a2007 [search, test of triple system].
@ Formation: Hyun et al a0705-wd [from gravitational collapse];
Savelova & Kirillov a1405 [artificial wormhole];
Horowitz et al CQG(19)-a1904 [nucleating a traversable wormhole];
Dai et al a2010 [simple formation model].
@ And galaxies: Bambi PRD(13)-a1304 [and galactic centers];
Rahaman et al EPJC(14)-a1307 [in the galactic halo?].
@ Quasinormal modes:
Konoplya & Zhidenko PRD(10)-a1004 [and scattering properties];
Konoplya & Zhidenko JCAP(16)-a1606 [ringing, vs black holes];
Konoplya PLB(18)-a1805 [and shape of the wormhole].
@ Particle and field propagation:
González-Díaz PRD(97)gq [on electromagnetic waves];
Strokov & Repin a0709/G&C [perihelion precession and light deflection];
Shatskiy PU(09)-a0809 [characteristic features of images];
Pozanenko & Shatskiy G&C(10),
a1007
[search for observational evidence in GRBs, soft-gamma repeaters];
Sarbach & Zannias AIP(12)-a1204;
Tsukamoto et al PRD(12)-a1207 [lensing and Einstein-ring systems, vs black holes];
Li & Bambi PRD(14)-a1405,
Narzilloev et al a2105 [distinguishing black holes and wormholes];
> s.a. black-hole formation;
types of dark matter.
Classical and Semiclassical Aspects > s.a. casimir effect;
gravitational self-force; holography;
quantum field theory effects [negative energies].
* Traversibility:
It is accompanied by unavoidable violations of the weak energy condition ("exotic matter").
@ Framework:
Friedman et al PRD(90) [Cauchy problem];
Hayward IJMPD(99)gq/98,
gq/03-conf [dynamical laws].
@ And time machines:
Frolov & Novikov PRD(90);
Echeverría et al PRD(91);
Antonsen & Bormann qp/96-proc;
Aref'eva & Volovich IJGMP(08)-a0710 [production at the LCH].
@ Thermodynamics:
Hong & Kim MPLA(06) [T < 0];
Martín-Moruno & González-Díaz CQG(09) [laws, thermal emission];
Bandyopadhyay et al IJTP(15)-a1211.
@ Other theoretical effects: Hochberg & Visser PRL(98)gq [null energy condition violation];
Cox et al a1109 [statistical mechanics of a gas of wormholes];
Olmo et al a1601-MG14 [as a cure for black-hole singularities];
Bejarano et al EPJC(17)-a1607 [and energy conditions].
@ Quantum field theory on wormhole background:
Khatsymovsky PLB(94);
Bezerra et al PRD(10) [massive scalar, vacuum stress-energy].
@ Semiclassical: Hawking NPB(91) [effective action];
Hochberg et al PRL(97)gq;
Khusnutdinov & Sushkov PRD(02)ht [massive scalar];
Khusnutdinov PRD(03);
Garattini CQG(05)gq [self-consistent to graviton 1-loop];
Buniy & Hsu PLB(06)ht/05 [instability];
Garattini & Lobo CQG(07)gq [phantom].
@ And chronology protection: Visser PRD(97)gq.
Quantum Aspects > s.a. entanglement in quantum
field theory; kaluza-klein models [higher-dimensional dyons].
* Motivation: Used to explain the
smallness of the cosmological constant, and as a mechanism for loss of coherence.
@ General references: Visser PRD(91),
MPLA(91) [Planck-size throat];
González-Díaz MPLA(93);
Hochberg PRD(95)gq [Lorentzian].
@ And constants of nature:
Hawking NPB(90);
> s.a. quantum gravity and cosmology [including cosmological constant].
@ And quantum gravity:
Hawking MPLA(90),
MPLA(90) [baby universes];
Kunstatter et al PRD(10),
PRD(11)-a1010 [Einstein-Rosen throat];
Kuhfittig IJPAM(13)-a1301 [in non-commutative geometry];
> s.a. FLRW quantum cosmology; minisuperspace;
quantum regge calculus; spacetime foam.
@ Black hole pair creation: Garattini NCB(98)gq/96;
González-Díaz IJMPD(97)gq/96.
@ Related topics:
Coleman & Lee NPB(90);
Hawking & Page PRD(90) [spectrum];
González-Díaz PRD(90) [coherence];
Ellis et al PLB(90),
Moss Nat(90)feb [in SQUIDs];
Garfinkle & Strominger PLB(91) [instanton for pair of Reissner-Nordström black holes];
Coleman & Hughes PLB(93) [global charge];
Cavaglià MPLA(94) [Kantowski-Sachs];
Lee & Kim PLB(04) [2D dilaton + ghost Klein-Gordon];
Santini qp/07-MGXI,
EPL(07)qp [as origin of EPR correlations];
Garattini CQG(07) [traversable, and equation of state];
Engelhardt et al PRD(15)-a1504 [electric fields threading quantum wormholes];
Mateos & Sabín PRD(18)-a1706 [quantum simulation in a BEC].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 20 may 2021