Kaluza-Klein Models and Solutions  

5D Abelian Theory > s.a. torsion in physics.
* Effective 4D fields: If the 5D metric has a Killing vector field along the 5th dimension, one gets a 4D metric, a scalar field (the size of the orbit, or norm of the Killing vector), and a 1-form that can be identified with the electromagnetic one.
@ General references: Orzalesi FdP(81); Salam & Strathdee AP(82); Sajko et al JMP(98) [4+1 split]; Ding et al MPLA(05)gq [Palatini form].
@ Hamiltonian form: Sajko IJMPD(00); Lacquaniti & Montani gq/06-MGXI, NCB(07)gq; > s.a. ADM formalism.
@ Effective potential: Appelquist & Chodos PRD(83); Kunstatter et al PRD(86); Kunstatter & Leivo PLB(87).
@ Energy, charges: Blau CQG(87); Bombelli et al NPB(87); Deser & Soldate NPB(89); Grégoire CQG(91); > s.a. positive-energy theorem.
@ Instability of vacuum, bubbles: Witten NPB(82); Duncan et al NPB(88); Brill & Pfister PLB(89); Corley & Jacobson PRD(94)gq; Shinkai & Shiromizu PRD(00)ht.
@ Decay of magnetic field: Dowker et al PRD(95)ht.
@ Inconsistency?: Duff et al PLB(84); Coquereaux & Jadczyk NPB(86); Mbelek & Lachièze-Rey gq/00/CQG.
@ Non-compactified: Darabi & Wesson PLB(02) [conformal invariance]; Wesson a1003 [and 4D Higgs field].
@ Related topics: Gavela & Nepomechie CQG(84) [discrete symmetries]; Rosen FP(88); Ellicott & Toms CQG(89); Wesson CQG(02)gq, PLB(02)gq [5D \(\mapsto\) 4D particle motion]; Shankar & Wali MPLA(10)-a0904 [with torsion, and cosmology].

Non-Abelian Theories > s.a. types of yang-mills theories.
@ General references: Cho JMP(75), & Freund PRD(75); Cho & Jang PRD(75); Orzalesi FdP(81); Weinberg PLB(83); Coquereaux & Esposito-Farèse AIHP(90); Rayski & Rayski NCA(90); Kihara & Nitta PRD(07)-a0704 [compactified to Einstein-Yang-Mills with higher-derivative coupling]; Eingorn et al CQG(13) [with spherical compatification].
@ Non-Abelian 5D theory: Böhmer & Fabbri MPLA(07)-a0710 [all SU(n) Einstein-Yang-Mills theories from 5D with torsion].
@ Matter: Luciani NPB(78); Orzalesi & Pauri PLB(81); Witten NPB(81) [supergravity]; Destri et al AP(83), LNC(83).

Particular Solutions > s.a. black holes in higher dimensions.
* From lower dimensions: From a 4D solution gab, then a 5D one is 5ds2 = gab dxa dxb + dψ2; From every stationary solution in 3 + p dimensions, one can get a static one in 3 + p + 1 dimensions.
@ With Killing vector fields (Ehlers-Harrison-Geroch-etc method): Maison GRG(79); Burzlaff & Maison JMP(79); Clément GRG(86); Bruckman PRD(87); Lee JMP(87), JMP(87); Matos GRG(87); & Breitenlohner & Maison.
@ Belinsky-Khalatnikov transformation: Belinsky & Khalathikov JETP(73); Belinsky & Ruffini PLB(80).
@ Spherically symmetric: Angus NPB(86) [5D, naked singularity]; Cvetič & Youm PRL(95)ht; Azreg-Ainou et al G&C(00)gq/99; Jakimowicz & Tafel IJTP(09)-a0810.
@ Monopoles, Abelian: Sorkin PRL(83), in(83), in(84); Gross & Perry NPB(83); Gibbons & Perry NPB(84) [and N = 8 supergravity multiplets], pr(85) [and pyrgon-monopole duality]; Sundaresan & Tanaka PRD(86); Carlip PRD(86); Macías & Matos CQG(96); Cavalcanti de Oliveira & Bezerra de Mello CQG(04) [in global monopole background]; Mann & Stelea PLB(06) [mass]; Bizoń et al PRL(06)gq [perturbations, stability].
@ Monopoles, non-Abelian: Horváth & Palla NPB(78); Bais & Batenburg NPB(85); Angus NPB(86); Mann & Stelea NPB(05)ht; Cotăescu NPB(05); Jakimowicz & Tafel IJTP(09).
@ Dyonic wormholes: Dzhunushaliev & Singleton GRG(00)gq/99 [foam and tests]; Chen CQG(01)gq/00; Vacaru & Singleton JMP(02)ht/01, CQG(02)ht/01.
@ Solitons: Ponce de León IJMPD(08); Eingorn & Zhuk PRD(11) [with toroidal compactification, viability of models].
@ Other solutions: Ben Amor LMP(86) [perfect fluid]; Fukui et al JMP(01)gq [5D cosmological]; Pugliese & Montani EPJC(11)-a1104 [5D star models]; Dzhunushaliev & Folomeev MPLA(14)-a1309 [wormholes with a compactified fifth dimension]; Branding et al CMP(19)-a1804 [cosmological].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 2 jul 2020