Kaluza-Klein Models and Solutions |
5D Abelian Theory > s.a. torsion in physics.
* Effective 4D fields:
If the 5D metric has a Killing vector field along the 5th dimension, one gets
a 4D metric, a scalar field (the size of the orbit, or norm of the Killing
vector), and a 1-form that can be identified with the electromagnetic one.
@ General references: Orzalesi FdP(81);
Salam & Strathdee AP(82);
Sajko et al JMP(98) [4+1 split];
Ding et al MPLA(05)gq [Palatini form].
@ Hamiltonian form: Sajko IJMPD(00);
Lacquaniti & Montani gq/06-MGXI,
NCB(07)gq;
> s.a. ADM formalism.
@ Effective potential:
Appelquist & Chodos PRD(83);
Kunstatter et al PRD(86);
Kunstatter & Leivo PLB(87).
@ Energy, charges: Blau CQG(87);
Bombelli et al NPB(87);
Deser & Soldate NPB(89);
Grégoire CQG(91);
> s.a. positive-energy theorem.
@ Instability of vacuum, bubbles:
Witten NPB(82);
Duncan et al NPB(88);
Brill & Pfister PLB(89);
Corley & Jacobson PRD(94)gq;
Shinkai & Shiromizu PRD(00)ht.
@ Decay of magnetic field: Dowker et al PRD(95)ht.
@ Inconsistency?: Duff et al PLB(84);
Coquereaux & Jadczyk NPB(86);
Mbelek & Lachièze-Rey gq/00/CQG.
@ Non-compactified:
Darabi & Wesson PLB(02) [conformal invariance];
Wesson a1003 [and 4D Higgs field].
@ Related topics:
Gavela & Nepomechie CQG(84) [discrete symmetries];
Rosen FP(88);
Ellicott & Toms CQG(89);
Wesson CQG(02)gq,
PLB(02)gq [5D \(\mapsto\) 4D particle motion];
Shankar & Wali MPLA(10)-a0904 [with torsion, and cosmology].
Non-Abelian Theories > s.a. types of yang-mills theories.
@ General references: Cho JMP(75),
& Freund PRD(75);
Cho & Jang PRD(75);
Orzalesi FdP(81);
Weinberg PLB(83);
Coquereaux & Esposito-Farèse AIHP(90);
Rayski & Rayski NCA(90);
Kihara & Nitta PRD(07)-a0704 [compactified to Einstein-Yang-Mills with higher-derivative coupling];
Eingorn et al CQG(13) [with spherical compatification].
@ Non-Abelian 5D theory: Böhmer & Fabbri MPLA(07)-a0710
[all SU(n) Einstein-Yang-Mills theories from 5D with torsion].
@ Matter: Luciani NPB(78);
Orzalesi & Pauri PLB(81);
Witten NPB(81) [supergravity];
Destri et al AP(83),
LNC(83).
Particular Solutions
> s.a. black holes in higher dimensions.
* From lower dimensions:
From a 4D solution gab,
then a 5D one is 5ds2
= gab
dxa dxb
+ dψ2; From every stationary solution
in 3 + p dimensions, one can get a static one in 3 + p + 1 dimensions.
@ With Killing vector fields (Ehlers-Harrison-Geroch-etc method):
Maison GRG(79);
Burzlaff & Maison JMP(79);
Clément GRG(86);
Bruckman PRD(87);
Lee JMP(87),
JMP(87);
Matos GRG(87);
& Breitenlohner & Maison.
@ Belinsky-Khalatnikov transformation: Belinsky & Khalathikov JETP(73);
Belinsky & Ruffini PLB(80).
@ Spherically symmetric:
Angus NPB(86) [5D, naked singularity];
Cvetič & Youm PRL(95)ht;
Azreg-Ainou et al G&C(00)gq/99;
Jakimowicz & Tafel IJTP(09)-a0810.
@ Monopoles, Abelian: Sorkin PRL(83),
in(83),
in(84);
Gross & Perry NPB(83);
Gibbons & Perry NPB(84) [and N = 8 supergravity multiplets],
pr(85) [and pyrgon-monopole duality];
Sundaresan & Tanaka PRD(86);
Carlip PRD(86);
Macías & Matos CQG(96);
Cavalcanti de Oliveira & Bezerra de Mello CQG(04) [in global monopole background];
Mann & Stelea PLB(06) [mass];
Bizoń et al PRL(06)gq [perturbations, stability].
@ Monopoles, non-Abelian:
Horváth & Palla NPB(78);
Bais & Batenburg NPB(85);
Angus NPB(86);
Mann & Stelea NPB(05)ht;
Cotăescu NPB(05);
Jakimowicz & Tafel IJTP(09).
@ Dyonic wormholes: Dzhunushaliev & Singleton GRG(00)gq/99 [foam and tests];
Chen CQG(01)gq/00;
Vacaru & Singleton JMP(02)ht/01,
CQG(02)ht/01.
@ Solitons: Ponce de León IJMPD(08);
Eingorn & Zhuk PRD(11) [with toroidal compactification, viability of models].
@ Other solutions: Ben Amor LMP(86) [perfect fluid];
Fukui et al JMP(01)gq [5D cosmological];
Pugliese & Montani EPJC(11)-a1104 [5D star models];
Dzhunushaliev & Folomeev MPLA(14)-a1309 [wormholes with a compactified fifth dimension];
Branding et al CMP(19)-a1804 [cosmological].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 2 jul 2020