Casimir Effect / Energy / Force |
In General > s.a. quantum field
theory phenomenology [negative energies]; vacuum.
* Idea: The QED prediction
that the vacuum is modified by the presence of boundaries, which has observable
effects; For example, two conducting uncharged infinite parallel plates will feel
an attractive force due to vacuum fluctuations of the field, since there are more
possible zero-point fluctuations outside the plates.
* Consequences: Tiny as it
is, the Casimir effect causes parts in nano- and microelectromechanical
systems (NEMS and MEMS) to stick together; Therefore, it confounds tabletop
experimental efforts to detect exotic new forces beyond those predicted by
Newtonian gravity and the Standard Model of particle physics.
* Calculation: One calculates the
stress tensor for the quantized electromagnetic field in the region of interest;
The Drude model treats the metal as a collection of billiard-ball-like positive
ions and electrons, the "plasma model" assumes the electrons move
in a fixed lattice of positive ions; 2012, the Drude model works best.
* Value: For plate separation
1 micron, the force is ~ 13 N/m2.
@ Reviews, intros: Kleppner PT(90)oct;
Milton ht/98-conf [history],
01;
Bordag et al PRP(01)qp;
Lambrecht pw(02)sep;
Milton JPA(04)ht [progress, rev];
Nesterenko et al RNC(04)ht/05 [recent results];
Klimchitskaya & Mostepanenko CP(06);
Farina BJP(06)ht;
Lamoreaux PT(07)feb;
Mostepanenko qp/07-MGXI;
issue JPA(08)#16;
Milton JPCS(09)-a0809;
Pálová et al AJP(09)nov [condensed-matter perspective];
Milton AJP(11)jul-a1101 [resource letter];
Lambrecht & Reynaud IJMPA(12)-a1112-conf;
Reynaud & Lambrecht a1410-ln;
Simpson & Leonhardt 15.
@ Reviews, measurements: Lamoreaux qp/99,
AJP(99)oct [RL];
Klimchitskaya & Mostepanenko CP(06)qp,
SPBPU(15)-a1507;
Strange et al PT(21)jan [uses].
@ General references: Casimir PKNAW(48);
Sparnaay Phy(58);
Israelachvili & Tabor PRS(72);
Mostepanenko & Trunov 97;
Milton ht/99-conf,
ht/00;
Herdegen APPB(01)ht/00;
Milton PRD(03)ht/02 [validity];
Valeri & Scharf qp/05 [microscopic theory];
Emig IJMPA(10) [general approach to fluctuation-induced interactions];
Milton LNP(11)-a1005;
Ingold & Lambrecht AJP(15)feb-a1404 [scattering approach];
Visser a1601-conf [finiteness of Casimir energy differences].
@ And algebraic quantum field theory:
Herdegen & Stopa AHP(10)-a1007;
Dappiaggi et al a1412.
@ Interpretation:
Kolomeisky & Straley a0807 [geometrical];
Gründler a1303;
Nikolić PLB(16)-a1605 [not from vacuum energy],
AP(17)-a1702.
@ Related topics:
Milonni PRA(82) [without vacuum radiation field];
Plunien et al PRP(86);
Belinfante AJP(87)feb;
Elizalde NCB(89);
Calucci JPA(92) [moving bodies];
Matloob PRA(99) [conducting plates];
Jaffe PRD(05) [vacuum and forces between charges];
Milton et al ht/06-MGXI [Green function approach];
Bachas JPA(07) [sign of force];
Milonni PS(07);
Reynaud et al IJMPA(10)-a1001-proc,
Lambrecht et al LNP(11)-a1006 [scattering approach];
Cerdonio & Rovelli a1406 [Casimir cavity, and weighing the vacuum];
Cherroret et al EPJD(15)-a1412 [statistical fluctuations above a disordered medium].
Related Effects and Topics > s.a. Casimir-Polder Force;
Friction [quantum friction]; inertia;
Surface Tension.
* Scharnhorst effect:
The anomalous, faster than c propagation of photons in the Casimir
vacuum; > s.a. causality violations.
@ And boundary conditions: Ravndal hp/00-conf;
Graham et al NPB(02),
NPB(04)ht/03 [Dirichlet],
comment Milton JPA(04)ht;
Nesterenko JPA(06)ht/05-proc [at spatial infinity];
Kolomeisky et al JPA(10)-a1002 [single boundary, and UV divergence];
Cao et al PRD(13)-a1301 [topological Casimir effect, electrodynamics on a compact manifold];
Asorey & Muñoz-Castañeda a1306
[general type depending on four parameters].
@ Measurements: Mohideen & Roy PRL(98)phy;
Roy et al PRD(99)qp;
Harris et al PRA(00)qp;
Bressi et al PRL(02)qp;
Chen et al PRA(04)qp [and errors];
Lisanti et al PNAS(05)qp [skin depth effect];
Klimchitskaya et al IJMPA(05),
JPA(06)in,
Chen et al IJMPA(05) [and long-range gravity];
Krause et al PRL(07) [beyond the proximity-force spproximation];
Obrecht et al PRL(07)
+ pn(07)feb [T dependence];
Munday & Capasso PRA(07)-a0705
+ pw(07)jun [in a fluid];
Esquivel-Sirvent JAP(07)-a0708 [reduction using aerogels];
Antonini et al JPCS(09)-a0812 [at large distances];
Klimchitskaya & Mostepanenko IJMPA(11)-a1010 [reliability of experiments];
García-Sánchez et al PRL(12)
+ news pw(12)jul [accurate measurements between 100 nm and 2 μm, Drude model].
@ Stress-energy tensor between plates: DeWitt in(79);
Gibbons in(79);
> s.a. energy conditions.
@ Scharnhorst effect:
Scharnhorst AdP(98)ht;
Liberati et al PRD(01)qp/00;
Barone & Farina PRD(05)ht/04 [2-parameter L];
> s.a. causality violations.
@ Radiative corrections: Kong & Ravndal PRL(97)qp;
Melnikov PRD(01).
@ Repulsive forces:
news pw(07)jul [with lens];
Milton et al IJMPA(12)-a1111-conf;
Jiang & Wilczek PRB(19) [with chiral material between the plates].
@ Other topics: Golestanian & Kardar PRL(97)qp [path-integral formulation];
Hofmann et al EPJC(99)ht/98 [bag model];
Feinberg et al AP(01)ht/99 [classical limit];
Kenneth & Nussinov PRD(02)ht/99 [small-object limit];
Hagen qp/01 [cutoff, Lorentz invariant];
Avagyan et al PRD(02)ht [in Fulling-Rindler vacuum];
Scardicchio & Jaffe NPB(05),
NPB(06) [optical approach];
Gies & Klingmüller PRL(06) [edge effects];
Høye et al PRA(16)-a1607 [negative entropies].
> Other situations and examples: see casimir effect
in different types of systems [including deformed theories and classical analogs].
More General Situations
> s.a. Casimir-Lifshitz Force; Krein Quantization.
* At finite temperature:
2008, Different theoretical approaches lead to very different predictions
for the magnitude of the effect, and no consensus exists yet on the
interpretation of recent absolute measurements of the Casimir force.
* Dynamical Casimir effect:
Motion-induced photon creation from the quantum vacuum inside closed,
perfectly conducting cavities with time-dependent geometries; It was
proposed in 1970 by Gerald Moore, and is related to the Unruh effect;
An example is the electromagnetic radiation of moving gravitating bodies
(> see gravitating matter).
@ Thermal corrections:
Mitter & Robaschik EPJB(00)qp/99;
Mostepanenko et al JPA(06)qp/05-proc [rev];
Geyer et al IJMPA(06).
@ T dependence: Genet et al PRA(00);
Svetovoy & Lokhanin PLA(01)qp;
Klimchitskaya & Mostepanenko PRA(01)qp;
Cheng JPA(02) [rectangular cavity];
Høye et al PRE(03) [transverse electric zero mode contribution];
Brevik et al qp/03-proc,
PRE(05)qp/04 [in metals];
Høye et al JPA(06)qp/05;
Brevik & Aarseth JPA(06);
Brevik et al NJP(06)qp [T corrections];
Jáuregui et al AP(06) [rectangular cavity];
Lamoreaux a0801;
Brevik & Milton PRE(08)-a0802;
Bimonte PRA(08)-a0807 [superconducting cavity];
Bimonte PRA(09)-a0903 [and Bohr-van Leeuwen theorem];
Brevik & Høye EJP(14)-a1312.
@ Dynamical Casimir effect: Schützhold et al PRA(98)qp [response theory approach];
Dalvit & Mazzitelli PRA(98)qp/97 [renormalization group];
Golestanian & Kardar PRA(98)qp [path-integral approach];
Plunien et al PRL(00)qp/99 [finite T];
Fedotov et al JOB(05) [instantaneous approximation];
Dalvit et al JPA(06)qp [different geometries];
Haro & Elizalde PRL(06)ht,
PRD(07)-a0705 [Hamiltonian approach];
Haro IJTP(07),
IJTP(07) [scalar fields];
Dodonov PS(10)-a1004 [rev];
Wilson et al Nat(11)jun-a1105
+ news nat(11)jun [observation];
news pw(11)nov;
Maghrebi et al PRD(13)-a1210 [scattering approach];
Lock & Fuentes NJP(17)-a1607 [in curved spacetime, Schwarzschild metric];
Paraoanu & Johansson EPN(20)-a2010 [overview];
Cao & Liu a2103 [Feynman diagram approach];
> s.a. mirrors.
@ Related topics: Jaekel & Reynaud JdP(92)qp/01,
JdP(93)qp/01 [motional Casimir effect];
Krüger et al PRL(11)-a1102 [non-equilibrium fluctuations and interactions].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 23 mar 2021