Casimir Effect / Energy / Force  

In General > s.a. quantum field theory phenomenology [negative energies]; vacuum.
* Idea: The QED prediction that the vacuum is modified by the presence of boundaries, which has observable effects; For example, two conducting uncharged infinite parallel plates will feel an attractive force due to vacuum fluctuations of the field, since there are more possible zero-point fluctuations outside the plates.
* Consequences: Tiny as it is, the Casimir effect causes parts in nano- and microelectromechanical systems (NEMS and MEMS) to stick together; Therefore, it confounds tabletop experimental efforts to detect exotic new forces beyond those predicted by Newtonian gravity and the Standard Model of particle physics.
* Calculation: One calculates the stress tensor for the quantized electromagnetic field in the region of interest; The Drude model treats the metal as a collection of billiard-ball-like positive ions and electrons, the "plasma model" assumes the electrons move in a fixed lattice of positive ions; 2012, the Drude model works best.
* Value: For plate separation 1 micron, the force is ~ 13 N/m2.
@ Reviews, intros: Kleppner PT(90)oct; Milton ht/98-conf [history], 01; Bordag et al PRP(01)qp; Lambrecht pw(02)sep; Milton JPA(04)ht [progress, rev]; Nesterenko et al RNC(04)ht/05 [recent results]; Klimchitskaya & Mostepanenko CP(06); Farina BJP(06)ht; Lamoreaux PT(07)feb; Mostepanenko qp/07-MGXI; issue JPA(08)#16; Milton JPCS(09)-a0809; Pálová et al AJP(09)nov [condensed-matter perspective]; Milton AJP(11)jul-a1101 [resource letter]; Lambrecht & Reynaud IJMPA(12)-a1112-conf; Reynaud & Lambrecht a1410-ln; Simpson & Leonhardt 15.
@ Reviews, measurements: Lamoreaux qp/99, AJP(99)oct [RL]; Klimchitskaya & Mostepanenko CP(06)qp, SPBPU(15)-a1507; Strange et al PT(21)jan [uses].
@ General references: Casimir PKNAW(48); Sparnaay Phy(58); Israelachvili & Tabor PRS(72); Mostepanenko & Trunov 97; Milton ht/99-conf, ht/00; Herdegen APPB(01)ht/00; Milton PRD(03)ht/02 [validity]; Valeri & Scharf qp/05 [microscopic theory]; Emig IJMPA(10) [general approach to fluctuation-induced interactions]; Milton LNP(11)-a1005; Ingold & Lambrecht AJP(15)feb-a1404 [scattering approach]; Visser a1601-conf [finiteness of Casimir energy differences].
@ And algebraic quantum field theory: Herdegen & Stopa AHP(10)-a1007; Dappiaggi et al a1412.
@ Interpretation: Kolomeisky & Straley a0807 [geometrical]; Gründler a1303; Nikolić PLB(16)-a1605 [not from vacuum energy], AP(17)-a1702.
@ Related topics: Milonni PRA(82) [without vacuum radiation field]; Plunien et al PRP(86); Belinfante AJP(87)feb; Elizalde NCB(89); Calucci JPA(92) [moving bodies]; Matloob PRA(99) [conducting plates]; Jaffe PRD(05) [vacuum and forces between charges]; Milton et al ht/06-MGXI [Green function approach]; Bachas JPA(07) [sign of force]; Milonni PS(07); Reynaud et al IJMPA(10)-a1001-proc, Lambrecht et al LNP(11)-a1006 [scattering approach]; Cerdonio & Rovelli a1406 [Casimir cavity, and weighing the vacuum]; Cherroret et al EPJD(15)-a1412 [statistical fluctuations above a disordered medium].

Related Effects and Topics > s.a. Casimir-Polder Force; Friction [quantum friction]; inertia; Surface Tension.
* Scharnhorst effect: The anomalous, faster than c propagation of photons in the Casimir vacuum; > s.a. causality violations.
@ And boundary conditions: Ravndal hp/00-conf; Graham et al NPB(02), NPB(04)ht/03 [Dirichlet], comment Milton JPA(04)ht; Nesterenko JPA(06)ht/05-proc [at spatial infinity]; Kolomeisky et al JPA(10)-a1002 [single boundary, and UV divergence]; Cao et al PRD(13)-a1301 [topological Casimir effect, electrodynamics on a compact manifold]; Asorey & Muñoz-Castañeda a1306 [general type depending on four parameters].
@ Measurements: Mohideen & Roy PRL(98)phy; Roy et al PRD(99)qp; Harris et al PRA(00)qp; Bressi et al PRL(02)qp; Chen et al PRA(04)qp [and errors]; Lisanti et al PNAS(05)qp [skin depth effect]; Klimchitskaya et al IJMPA(05), JPA(06)in, Chen et al IJMPA(05) [and long-range gravity]; Krause et al PRL(07) [beyond the proximity-force spproximation]; Obrecht et al PRL(07) + pn(07)feb [T dependence]; Munday & Capasso PRA(07)-a0705 + pw(07)jun [in a fluid]; Esquivel-Sirvent JAP(07)-a0708 [reduction using aerogels]; Antonini et al JPCS(09)-a0812 [at large distances]; Klimchitskaya & Mostepanenko IJMPA(11)-a1010 [reliability of experiments]; García-Sánchez et al PRL(12) + news pw(12)jul [accurate measurements between 100 nm and 2 μm, Drude model].
@ Stress-energy tensor between plates: DeWitt in(79); Gibbons in(79); > s.a. energy conditions.
@ Scharnhorst effect: Scharnhorst AdP(98)ht; Liberati et al PRD(01)qp/00; Barone & Farina PRD(05)ht/04 [2-parameter L]; > s.a. causality violations.
@ Radiative corrections: Kong & Ravndal PRL(97)qp; Melnikov PRD(01).
@ Repulsive forces: news pw(07)jul [with lens]; Milton et al IJMPA(12)-a1111-conf; Jiang & Wilczek PRB(19) [with chiral material between the plates].
@ Other topics: Golestanian & Kardar PRL(97)qp [path-integral formulation]; Hofmann et al EPJC(99)ht/98 [bag model]; Feinberg et al AP(01)ht/99 [classical limit]; Kenneth & Nussinov PRD(02)ht/99 [small-object limit]; Hagen qp/01 [cutoff, Lorentz invariant]; Avagyan et al PRD(02)ht [in Fulling-Rindler vacuum]; Scardicchio & Jaffe NPB(05), NPB(06) [optical approach]; Gies & Klingmüller PRL(06) [edge effects]; Høye et al PRA(16)-a1607 [negative entropies].
> Other situations and examples: see casimir effect in different types of systems [including deformed theories and classical analogs].

More General Situations > s.a. Casimir-Lifshitz Force; Krein Quantization.
* At finite temperature: 2008, Different theoretical approaches lead to very different predictions for the magnitude of the effect, and no consensus exists yet on the interpretation of recent absolute measurements of the Casimir force.
* Dynamical Casimir effect: Motion-induced photon creation from the quantum vacuum inside closed, perfectly conducting cavities with time-dependent geometries; It was proposed in 1970 by Gerald Moore, and is related to the Unruh effect; An example is the electromagnetic radiation of moving gravitating bodies (> see gravitating matter).
@ Thermal corrections: Mitter & Robaschik EPJB(00)qp/99; Mostepanenko et al JPA(06)qp/05-proc [rev]; Geyer et al IJMPA(06).
@ T dependence: Genet et al PRA(00); Svetovoy & Lokhanin PLA(01)qp; Klimchitskaya & Mostepanenko PRA(01)qp; Cheng JPA(02) [rectangular cavity]; Høye et al PRE(03) [transverse electric zero mode contribution]; Brevik et al qp/03-proc, PRE(05)qp/04 [in metals]; Høye et al JPA(06)qp/05; Brevik & Aarseth JPA(06); Brevik et al NJP(06)qp [T corrections]; Jáuregui et al AP(06) [rectangular cavity]; Lamoreaux a0801; Brevik & Milton PRE(08)-a0802; Bimonte PRA(08)-a0807 [superconducting cavity]; Bimonte PRA(09)-a0903 [and Bohr-van Leeuwen theorem]; Brevik & Høye EJP(14)-a1312.
@ Dynamical Casimir effect: Schützhold et al PRA(98)qp [response theory approach]; Dalvit & Mazzitelli PRA(98)qp/97 [renormalization group]; Golestanian & Kardar PRA(98)qp [path-integral approach]; Plunien et al PRL(00)qp/99 [finite T]; Fedotov et al JOB(05) [instantaneous approximation]; Dalvit et al JPA(06)qp [different geometries]; Haro & Elizalde PRL(06)ht, PRD(07)-a0705 [Hamiltonian approach]; Haro IJTP(07), IJTP(07) [scalar fields]; Dodonov PS(10)-a1004 [rev]; Wilson et al Nat(11)jun-a1105 + news nat(11)jun [observation]; news pw(11)nov; Maghrebi et al PRD(13)-a1210 [scattering approach]; Lock & Fuentes NJP(17)-a1607 [in curved spacetime, Schwarzschild metric]; Paraoanu & Johansson EPN(20)-a2010 [overview]; Cao & Liu a2103 [Feynman diagram approach]; > s.a. mirrors.
@ Related topics: Jaekel & Reynaud JdP(92)qp/01, JdP(93)qp/01 [motional Casimir effect]; Krüger et al PRL(11)-a1102 [non-equilibrium fluctuations and interactions].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 23 mar 2021