Types of Spacetimes |
General Types
> s.a. causality conditions; causality violations;
Geodesically Complete; lorentzian geometry.
* Generic: Every
timelike or null geodesic contains at least one point with
non-zero Ka
Kb
K[c
Rd]ab[e
Kf ] (effective curvature).
* Strongly asymptotically
predictable: Essentially, a spacetime with no naked singularities, except
white holes; An asymptotically flat spacetime (M, g), with
compactification (M′, g′), such that in M
there is a sufficiently large open region V (i.e., which contains the
past of \(\cal I\)+, the closure
of M′ ∩ J
−(\(\cal I\)+)
is in V), which makes (V′, g′) globally hyperbolic.
* Totally vicious:
A spacetime (M, g) such that for all p in M,
I −(p) ∩
I +(p) = M,
i.e., the Lorentzian distance function d(p, q)
= ∞; Examples are a 2-torus with the usual metric, the Gödel
spacetime, the Kerr-Newman solution with a2
+ e2 > m2.
@ General references: Manchak PhSc(11) [what is a physically reasonable spacetime?].
@ Conformally flat spacetimes:
Pina & Tenenblat JGP(07);
de Siqueira a1212-conf [?].
@ Totally vicious: Ikawa & Nakagawa JoG(88);
Matori JMP(88);
Kim & Kim JMP(93).
@ Topologically non-trivial:
Lobo a1604-MG14 [multiply-connected spacetimes, rev];
> s.a. geons; wormholes.
@ Related topics:
Markowitz GRG(82) [conformally hyperbolic];
Beem & Harris GRG(93) [generic];
Hall CQG(96) [decompositions into constant-type regions];
Ramos et al JMP(03) [double warped, invariant characterization];
Aké et al a1808
[globally hyperbolic, with timelike boundaries].
> In terms of curvature:
see petrov types; riemann
tensor [constant invariants]; Silent Universe;
solutions; weyl tensor [purely magnetic].
> In terms of physical interpretation:
see asymptotic flatness; black holes;
cosmological models; Non-Imprisonment.
Cylindrically Symmetric
> s.a. axisymmetry [including higher dimensions]; models
in canonical general relativity; [cosmic strings].
* Idea: Axisymmetry with an additional z-invariance.
@ Levi-Civita: Rao JPA(71) [radiating];
Delice APPB(06)gq/04 [vacuum, non-static],
gq/05-wd [radiating].
@ Other general relativity: Buchdahl PR(59) [massless scalar field, Buchdahl solution];
Carot et al CQG(99)gq [def];
Arazi & Simeone GRG(00)gq;
Barnes CQG(00)gq = gq/00-proc;
Senovilla & Vera CQG(00)gq [dust cosmology];
Klepac & Horsky CQG(00)gq [Einstein-Maxwell + fluid];
Qadir et al CQG(00)gq/07 [homotheties];
Fjällborg CQG(07) [static, Einstein-Vlasov];
Žofka & Bičák CQG(08)-a0712 [static, with cosmological constant];
Trendafilova & Fulling EJP(11)-a1101 [vacuum, static];
Giardino JModP(14)-a1403 [vacuum];
Bronnikov et al CQG(20)-a1901 [rev].
@ With massless scalar and cosmological constant:
Momeni & Miraghaei IJMPA(09);
Rezazadeh IJTP(11);
Erices & Martínez PRD(15)-a1504 [stationary].
@ In other theories of gravity: Arazi & Simeone EPJP(11)-a1102 [Brans-Dicke theory];
Shamir & Raza ASS(15)-a1506 [f(R,T) gravity].
Einstein Manifold / Metric / Space / Static Universe
> s.a. embeddings; de sitter space.
$ Def: A manifold with
Lorentzian metric such that Rab
= c gab, with c a constant.
* Brinkman's theorem:
Two Einstein spaces can be conformally mapped to each other only if both are
Ricci-flat pp-waves, or both are conformally flat [@ Daftardar-Gejji
GRG(98), with matter].
@ General references: Petrov 69;
Besse 87;
Gao JDG(90);
Dancer & Strachan CQG(02)m.DG [on TSn+1];
Gibbons et al CQG(04)ht
[5D, on S3-bundle over S2];
Böhm JDG(04) [and simplicial complexes];
Boyer et al AM(05) [on spheres];
Mitra a0806/PRD;
Kiosak & Matveev CRM(09)-a0905 [no conformal rescalings in complete case];
Sung JGP(11) [non-existence of Einstein metrics on some classes of 4-manifolds];
Deshmukh JGP(11) [characterization];
Andersson & Moncrief JDG(11) [as attractors for the Einstein flow].
@ Stability:
Barrow et al CQG(03) [with pfluid];
Carneiro & Tavakol PRD(09)-a0907 [in the presence of vacuum energy];
Grøn GRG(10);
Barrow & Yamamoto PRD(12)-a1108 [as a non-LRS Bianchi type IX solution];
Kröncke AGAG(15)-a1311.
@ In other gravity theories, stability: Seahra & Böhmer PRD(09)-a0901 [instability in \(f(R)\) theories];
Böhmer & Lobo PRD(09) [in modified Gauss-Bonnet gravity];
Miritzis PRD(09) [in fourth-order gravity];
Goheer et al CQG(09);
Böhmer et al MG12(12)-a1001;
Canonico & Parisi PRD(10)-a1005 [in semiclassical lqc and Hořava-Lifshitz];
Atazadeh et al PLB(14) [in braneworld scenario];
> s.a. higher-order theories [hybrid theories];
hořava gravity.
@ Conformally Einstein: Gover m.DG/04-proc [almost];
Gover & Nurowski JGP(06)m.DG/04 [obstructions, n-dimensional].
@ Other generalizations: Ge et al a1508 [discrete];
Klemm & Ravera PRD(20)-a1811 [with torsion and non-metricity].
Stationary and Related Spacetimes
> s.a. general relativity solutions with symmetries and
with matter; Papapetrou Theorem.
* Ehlers group: A symmetry
group of the vacuum Einstein equation for strictly stationary spacetimes.
* Stationary spacetime: One
with a timelike Killing vector field, or with a one-parameter isometry group
such that its orbits are everywhere timelike curves.
* Static spacetime: A stationary
spacetime in which the timelike Killing vector field is hypersurface-orthogonal.
* Pseudostationary spacetime: A
spacetime with a Killing vector field which is timelike at sufficiently large
asymptotic distances.
@ Static: Bartnik & Tod CQG(06)gq/05 [and spatial 3-metrics];
Sánchez & Senovilla CQG(07) [global orthogonal decomposition];
Lafontaine JGP(09);
Cederbaum a1210-proc [geometry, geometrostatics];
Ferrando & Sáez CQG(13)-a1302 [3-metrics that are spatial metrics of static vacuum solutions];
Figueiredo & Natário a2004 [duality with Riemannian manifolds];
> s.a. anti-de sitter spacetime; Ultrastatic Spacetimes.
@ Stationary: Tod CQG(17)-a1702 [characterizing initial data].
@ Related topics: Mars CQG(01)gq [Ehlers group];
> s.a. conformal transformations [extensions]; killing
vector fields; spin coefficients.
Other Symmetries > s.a. general relativity solutions
with symmetries; killing fields; lorentzian
geometry; Maximally Symmetric Geometry.
@ Flat: Barbot JGP(04)m.GT [globally hyperbolic];
Guediri DG&A(04) [compact];
Adler & Overduin GRG(05) [approximately flat];
Bonsante JDG(05) [with compact hyperbolic Cauchy surfaces];
> s.a. conservation laws; minkowski space.
@ 3D: Bona & Coll JMP(94) [with isometries];
Charette et al JGP(03) [with closed timelike curves].
@ Plane symmetric: Feroze et al JMP(01) [classification];
Shabbir & Ramzan a1512 [non-static, proper curvature collineations].
@ Homogeneous:
Bueken & Vanhecke CQG(97) [curvature homogenous];
Valiente CQG(98)gq,
CQG(99)gq/98,
CQG(00) [polyhomogeneous];
Meessen LMP(06) [with canonically homogeneous null geodesics];
> s.a. bianchi models and FLRW models.
@ Other spatial symmetries: Llosa & Carot CQG(10)-a0907 [two Killing vector fields, flat deformations];
> s.a. Self-Similarity; spherical
symmetry [including Painlevé-Gullstrand form].
Other Types
> s.a. coordinates [forms of line element];
examples of lie groups [spacetime groups].
* Generalized Lewis-Papapetrou:
A metric of the form ds2
= −f (dt + ωi
dxi)2
+ f −1 gij
dxi dx j ;
> s.a. teleparallel gravity.
@ References:
Clarke & Joshi CQG(88) [reflecting].
> Specific forms of the metric:
see Gordon Ansatz; Kerr-Schild Metric;
Misner Metric; Misner Space;
Newman-Tamburino Metrics; W-Universe.
> Generalized geometries:
see types of metrics [singular, distributional]; types
of lorentzian geometries [including low-regularity]; types of singularities.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 17 may 2020