Black-Hole Formation  

In General > s.a. cosmic censorship; numerical simulations.
* Idea: If not primordial, black holes form mainly by (i) Gravitational collapse of massive objects (e.g., stars, cores of dense star clusters or galaxies), (ii) High density fluctuations in the early universe, or (iii) Possibly high-energy processes, such as in accelerator or cosmic ray collisions.
* And observation: Results show that, just like matter accreting onto a black hole is never actually seen to cross the horizon because to an outside observer it would appear to take an infinite time to do so, collapsing matter would also never be seen to form an event horizon.
@ General references: Ashtekar gq/03-proc [fluxes and black-hole growth]; Christodoulou a0805 [generic data, no smallness or symmetry assumptions]; Crane a1001-FQXi [artificial black holes]; Zaslavskii G&C(11)-a1102 [black holes surrounded by massive shells and black-hole thermodynamics]; Rezzolla & Takami CQG(13)-a1209 [colliding self-gravitating fluid objects]; Khuri JHEP-a1503 [from concentration of angular momentum].
@ And radiation: Mazur MPLA(89)gq/97; Fredenhagen & Haag CMP(90); Liberati et al PRD(00)gq [extremal Reissner-Nordström]; Senovilla CQG(15)-a1408 [formation by incoming electromagnetic radiation].

Mechanisms > s.a. black-hole phenomenology [including stages in black-hole evolution]; gravitational collapse [including Hoop conjecture]; primordial.
* Stellar collapse: It can lead to a black hole for 2 MSun< M < 100 MSun, since for M < 2 MSun it stops at the neutron star stage, and heavier stars do not exist (unstable); Black holes are more likely to form from stars with low abundances of heavy elements, since high abundances are likely to give supernova explosions with large losses of mass.
@ Stellar collapse: Hartle in(73); Burrows PT(87)sep; Zampieri et al ApJ(98)ap; Fryer ApJ(99)ap [simulations, various Ms]; Ruffini et al PLB(03)ap [plasma and charge]; news pw(13)may [possible observable flash]; Clausen et al ApJ(15)-a1406 [formation probability]; Fuller & Ma a1907 [slow rotation].
@ Accretion: Lynden-Bell Nat(69)aug; Chakrabarti PRP(96); Park & Ostriker ASR(98)ap-conf; Blandford ASP-ap/99; Paczyński ap/00/ApJL.
@ Binary systems: Alvi & Liu GRG(02)gq/01 [tidally induced].
@ Microscopic: Barrau et al ApJ(05)ap [and TeV-scale gravity].
@ From cosmic strings: Hawking PLB(89) [collapse]; Hawking & Ross PRL(95)gq [breaking]; Russo JPA(07) [collision].
@ Other origin: Kuhfittig SRE(08)-a0812 [from wormholes]; Lindgren CQG(16)-a1512 [from pointlike particles in 3D AdS spacetime]; Yang et al PRL(19) [hierarchical black hole mergers in active galactic nuclei].
> Related topics: see dark-matter phenomenology [supermassive black holes].

Quantum Description > s.a. gravitational collapse; quantum cosmology; quantum-gravity phenomenology; semiclassical general relativity.
@ References: Thirring PLB(83); Daghigh et al CQG(07)gq/06 [real scalar field collapse]; Hwang et al CQG(12) [charged black holes, numerical]; Casadio et al EPJC(12)-a1205 [minimum black-hole mass from colliding Gaussian packets]; Münch a2103 [in lqg, causal structure].

TeV-Scale Quantum Gravity / Brane World HEP > s.a. cosmic rays.
* 2001: Suggestions that black holes can be formed in the TeV realm of the LHC, or by cosmic rays.
* 2006: Suggestion that black holes will not be formed in high numbers, otherwise we would have seen p decay.
* 2009: Numerical simulations by Choptuik & Pretorius support idea of black-hole formation in collisions.
* 2013: More work by Sperhake; A fraction of the kinetic energy is radiated away gravitationally; The rest is absorbed by the black hole.
@ HEP interactions: Dar et al PLB(99) [strangelets]; Dimopoulos & Landsberg PRL(01)hp; Landsberg PRL(02)hp/01; Giddings & Thomas PRD(02)hp/01; Casadio & Harms IJMPA(02)ht/01; Voloshin PLB(01) [semiclassical suppression]; Eardley & Giddings PRD(02)gq; Giddings ht/02-in, GRG(02)ht; Solodukhin PLB(02)hp [cross sections]; Ida et al PRD(03)ht/02, PRD(05) [rotating]; Yoshino & Nambu PRD(03)ht/02 [grazing collisions]; Cavaglià IJMPA(03)hp/02 [rev]; Ahn et al APP(05)hp/03 [air showers]; Anchordoqui et al PLB(04)hp/03 [inelasticity]; Kanti IJMPA(04)hp [rev]; Giddings & Rychkov PRD(04)ht [and wavepackets]; Yoshino & Rychkov PRD(05)ht [cross sections]; Harris et al JHEP(05); Cardoso et al CQG(05)hp; Koch et al JHEP(05)hp, Hossenfelder et al hp/05 [with remnants]; Casanova & Spallucci CQG(06) [decay, rev]; Cavaglià et al CPC(07)hp/06 [CATFISH Monte Carlo simulator]; Kaloper & Terning GRG(07)-a0705 [mechanism]; Maia & Monte JPCS(11)-a0808 [AdS-cft and stability]; Schelpe a0809 [Randall-Sundrum scenario]; Coyne & Cheng a0905; Bleicher et al IJMPE(11)-a1111-conf [rev].
@ Radiation and signatures: Cheung PRL(02); Cavaglià PLB(03)hp; Choudhury et al MPLA(04); Stojković PRL(05)hp/04 [ADD vs RS]; Alberghi et al hp/06; Ida et al PRD(06)ht [rotating black holes]; Alig et al JHEP(06)hp [QCD effects]; Dvali et al JHEP(11)-a1006 [decay and horizon-area quantization].
@ Simulations of ultrarelativistic collisions: Choptuik & Pretorius PRL(10)-a0908 + news physorg(10)apr; East & Pretorius PRL(13)-a1210.
@ Disaster scenarios: Jaffe et al RMP(00)hp/99; Close pw(07)aug; Kapusta PiP(08)-a0804; news NYT(08)jun [CERN report]; Koch et al PLB(09)-a0807 [summary]; Giddings & Mangano PRD(08)-a0806, comment Peskin Phy(08) [astrophysical implications]; Ellis et al JPG(08)-a0806; Johnson a0912 [judicial aspects]; Ahn a1006 [possible suppression of evaporation].
@ At the LHC: Cavaglià et al CQG(03)hp; Mocioiu et al PLB(03) [hadrons]; Gingrich IJMPA(06)hp [cross section], JHEP(07) [and charged partons], JHEP(07)-a0706 [missing energy], IJMPA(07); Kanti LNP(09)-a0802 [rev]; Dvali & Redi PRD(08); Calmet et al PLB(08)-a0806 [colorful]; Bock & Humanic IJMPA(09) [quantitative predictions using CATFISH]; Gingrich CPC(10)-a0911 [QBH Monte Carlo event generator], JPG(10)-a0912, PRD(10)-a1001 [tidal-charged black holes]; Bleicher & Nicolini JPCS(10)-a1001 [rev]; CMS Collaboration PLB(11)-a1012 + news pt(10)dec [no evidence of black-hole production yet]; Kiritsis & Taliotis a1110; Bellagamba et al EPJC(12)-a1201 [black-hole remnants]; Park PPNP(12)-a1203; Farag Ali JHEP(12)-a1208 [with minimal length, energy not high enough]; Nicolini et al a1302-MG13; Aad et ATLAS PRL(14), news pt(14)mar [none seen so far]; > s.a. electroweak theory.
@ Cosmic rays: Anchordoqui et al PRD(02)hp/01, hp/03-in, PLB(04)hp/03 [bounds]; Giddings eConf-hp/01; Feng & Shapere PRL(02)hp/01; Ahn & Cavaglià IJMPD(03)hp; Ahn et al PRD(03); Stojković et al PRL(06)hp/05 [suppression, and p decay]; Anchordoqui et al PRD(07) [and IceCube neutrino detector]; Cavaglià & Roy PRD(07) [QCD and spin effects]; Gora et al a0906-proc [shower simulations]; Mureika et al PRD(12)-a1111 [increase of cross section with energy].

In Modified Gravity Theories
@ Gauss-Bonnet black holes: Barrau et al PLB(04); Alexeyev et al G&C(05).
@ Higher-order gravity: Rychkov PRD(04)hp; Rizzo JHEP(05)hp.
@ String theory: Hewett et al PRL(05)hp [critical string theory]; Iengo & Russo JHEP(06)ht [fundamental cosmic string collisions].
@ Other theories: Hossenfelder PLB(04)ht, MPLA(04)hp [with minimal length]; Satheeshkumar PhD-a1507 [with broken Lorentz and diffeomorphism symmetries].
@ Related topics: Hsu PLB(03)hp/02 [path integral, amplitude]; Cavaglià & Das CQG(04) [thermodynamics]; Doukas et al MPLA(06) [lepton-number violation]; Abdalla et al JHEP(07) [quasinormal-mode characterization]; Calmet & Landsberg a1008 [as lower-dimensional objects]; Dvali et al JHEP(11) [consequences of area quantization]; Torres et al IJMPD(13)-a1309 [quasi-stable black holes].


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 31 mar 2021