Unruh Effect  

In General > s.a. black-hole radiation; entanglement phenomenology [non-inertial frames]; particle effects [self-energy]; radiation.
* Idea: Radiation seen by accelerated detectors (e.g., at rest near a black hole, or Rindler detectors in Minkowski spacetime); An accelerated system heats up, and responds to inertial vacuum fluctuations as if it was immersed in a thermal bath of temperature T = (2π\(\hbar\)/ck) a.
@ General references: & Bisognano & Wichmann 75; Davies JPA(75); Unruh PRD(76) [detector]; Letaw PRD(81); Padmanabhan ASS(82), CQG(85); Unruh & Wald PRD(82), PRD(84); Donoghue & Holstein AJP(84)aug [elementary arguments]; Wald in(85); Grove & Ottewill CQG(85); Padmanabhan PRL(90); Deser & Levin CQG(98)ht, PRD(99)ht/98; Alsing & Milonni AJP(04)dec-qp [simplified, and spin-1/2]; Lin & Hu PRD(06)gq/05; De Bievre & Merkli CQG(06)mp [proof]; Obadia & Milgrom PRD(07)gq [arbitrary trajectories]; Crispino et al RMP(08)-a0710 [and applications, rev]; Akhmedova et al PLB(09)-a0808 [methods]; Gill et al AJP(10)jul-a1001 [WKB-like approach]; Anastopoulos & Savvidou JMP(12)-a1109 [local character of the effect]; Colosi & Rätzel Sigma(13)-a1204 [in general-boundary quantum field theory].
@ Interpretations: Grove CQG(86); Barut & Dowling PRA(90) [without second quantization]; Keyl PLB(97); Lynden-Bell et al AP(99)gq/98; Pauri & Vallisneri FP(99)gq [classical roots]; Hu & Raval qp/00-conf; Noltingk IJTP(01) [consistent histories]; Das & Zelnikov PRD(01)ht [holographic]; Akhmedov & Singleton JETPL(07)-a0705 [simple arguments]; Earman SHPMP(11); Buchholz & Solveen CQG(13)-a1212 [and the concept of temperature]; Buchholz & Verch GRG(16)-a1505 [and Tolman's law]; > s.a. mach's principle.
@ Reviews: Takagi PTP(86); Ginsburg & Frolov SPU(87).
@ Back-reaction: Reznik PRD(98)gq [first-quantized]; Casadio & Venturi PLA(99)qp; > s.a. Back-Reaction.
@ And Planck-scale physics: Agulló et al PRD(08)-a0802, NJP(10)-a1010; Nicolini & Rinaldi PLB(11)-a1012 [with a minimal length]; Alkofer et al PRD(16)-a1605 [quantum gravity signatures].
@ Finite times: Martinetti & Rovelli CQG(03)gq/02; Schlicht CQG(04)gq/03 [and causality]; Martinetti JPCS(07)gq/04; Fewster et al CQG(16)-a1605; Shevchenko a1607 [and Landauer's principle].
@ Related topics: Boyer PRD(84) [classical analog]; Audretsch et al PRD(95) [continuous decoherence]; Mochizuki & Suga gq/99, Nikolić ht/00 [energy conservation]; Kuckert CMP(01)mp/00 [CPT symmetry]; Fedotov et al PLA(02)ht [scalar background–non-thermal]; Benatti & Floreanini PRA(04); Louko & Satz CQG(06)gq, gq/06-MGXI [spatial profile], CQG(08)-a0710 [curved spacetime]; Schlemmer ht/07 [local equilibrium states]; Campo & Obadia a1003 [and Lorentz symmetry]; Tian & Jing PLB(12)-a1203 [and transition between classical and quantum decoherences]; in Brown et al PRD(13)-a1212 [universality]; Aref'eva & Volovich a1302; Buchholz CQG(15)-a1412 [macroscopic aspects]; Barbado a1501-PhD [different observers]; Oshita et al a1604-proc [Unruh radiation and thermal random motions]; > s.a. casimir effect; Detector.

Specific Situations and Phenomenology > s.a. equivalence principle [violation]; geometric phase; Rainbow Gravity.
* Anti-Unruh effect: An effect in which a uniformly accelerated particle detector coupled to the vacuum cools down as its acceleration increases;
@ Rindler space: Silaev & Khrustalev TMP(92) [no radiation!]; Matsas PLB(96)gq; Oriti NCB(00)gq/99 [spinors]; Schützhold PRD(01)gq/00; Arageorgis et al PhSc(03)jan [conceptual, and Fulling non-uniqueness]; Peña et al PRD(05)gq; Satz CQG(07)gq/06 [regularisation prescription]; Russo & Townsend CQG(10); Brádler et al CMP(12) [impact of the Davies-Fulling-Unruh noise on quantum communication]; Nicolaevici CQG(15)-a1501 [with accelerated mirror masking the horizon].
@ Circular motion, accelerated electrons: Bell & Leinaas NPB(83), NPB(87); Rogers PRL(88); Leinaas ht/01-conf [storage rings]; Akhmedov et al ht/06-wd [no radiation]; Schützhold et al PRL(06).
@ Decay of accelerated particles: Vanzella & Matsas PRL(01)gq, Matsas & Vanzella IJMPD(02)gq [Fulling-Davies-Unruh effect].
@ de Sitter background: Gibbons & Hawking PRD(77); Garbrecht & Prokopec CQG(04); Casadio et al MPLA(11); > s.a. anti-de sitter space.
@ In a cavity: Obadia PRD(07)gq; Brenna et al PRD(13)-a1307 [universality and thermalization]; Ahmadzadegan et al PRD(14) [response of particle detectors].
@ Anti-Unruh effect: Brenna et al PLB(16)-a1504 [1+1D, detector coupled to a scalar field vacuum]; Garay et al PRD(16)-a1607 [accelerated detector coupled to a KMS state of a quantum field, click-rate decrease with increasing temperature].
@ Proposed experimental tests: Yablonovitch PRL(89) [dynamical Casimir effect]; Rosu IJMPD(94)gq/96, G&C(01)gq/94; Scully et al PRL(03)qp [atoms in a cavity]; Smolyaninov PLA(08)cm/05 [photoluminescence from a gold nanotip], PLA(08) [in a waveguide]; Peña & Sudarsky FP(14)-a1306 [on its measurability]; Cozzella et al PRL(17)-a1701 + news Cho sci(17)apr; > s.a. acceleration; bose-einstein condensate.
@ In other theories: Hodgkinson & Louko JMP(12) [beyond four dimensions]; Berra-Montiel et al a1612 [for higher-derivative field theory]; Kajuri a1704 [in non local field theories].
@ Related topics: Rovelli & Smerlak PRD(12)-a1108 [model with mirror, without entanglement]; Barbado & Visser PRD(12)-a1207 [with time-dependent acceleration]; Steane a1512 [and macroscopic quantum interference]; Capolupo & Vitiello NCC(16)-a1512 [geometric phase and temperature].

Other Points of View
@ Papers questioning the effect: Casadio & Venturi PLA(95)qp; Fedotov et al PLA(99)ht; Narozhny et al PRD(02)ht/99; Oriti NCB(00)gq/99 [spinor field]; Ford & O'Connell PLA(06)qp/05; Lin & Hu PRD(07)gq/06; Cotăescu a1301 [how to kill it]; Hossain & Sardar CQG(16)-a1411, comment Rovelli a1412 [claim of absence in polymer quantization].
@ Defending the reality of the effect: Requardt a1311.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 7 may 2017