Quantum Equivalence Principle  

In General
* Status: 2001, Neutron interferometry
sees a statistically significant violation, but atomic interferometry does not.
@ General references: Okon & Callender EJPS(11)-a1008 [conceptual]; Giulini SdW-a1309 [and atom interferometry]; Zych & Brukner a1502 [formulation and tests]; Bjerrum-Bohr et al IJMPD(15)-a1505-GRF; Nauenberg AJP(16)nov [precise formulation and neutron diffraction experiment]; Seveso et al JPCS(17)-a1702; Anastopoulos & Hu CQG(18)-a1707 [two versions].
@ Weak equivalence principle: Camacho & Camacho-Guardian AIP(09)-a0811 [definition]; de Matos a1006 [and wave packet phase/group velocity].
@ Other theory: Aharonov & Carmi FP(73); Davies & Fang PRS(82); Candelas & Sciama PRD(83), in(84); Greenberger AIHP(88); Hessling NPB(94); Kleinert qp/96-ln; Lämmerzahl GRG(96)gq, CQG(98)gq, APPB(98)gq; Shiekh HI(97)gq/96-proc; Kauffmann gq/97; Mannheim gq/98-ch; Camacho MPLA(99)gq, MPLA(00)gq; Bertoldi et al CQG(00)ht/99; Mensky gq/02-conf [in terms of paths]; Huerfano et al qp/06; Kajari et al APB(10)-a1006 [effect of inertial and gravitational mass on wave-function dynamics]; Lebed a1304/PRL, AHEP-a1404 [gravitational mass and energy for a composite quantum system].
@ And gravity: Davies CQG(04)qp [tunneling], CQG(04)qp [transit time].
@ Related topics: Matone FPL(02)ht/00 [origin of interactions]; Obukhov PRL(01) [and Dirac fermions]; Herdegen & Wawrzycki PRD(02)gq/01, Wawrzycki gq/02, APPB(04)gq/03 [Newtonian]; Castello-Branco & Martins JMP(10) [non-commutative quantum mechanics]; Mousavi et al CQG(15)-a1502 [effect of quantum statistics].

Violation > s.a. equivalence principle; quantum gravity; scalar-tensor theories.
* Idea: The validity of the equivalence principle in quantum theory has been questioned by a number of authors.
* In quantum field theory: A particle detector can read out information about the non-local structure of spacetime; > s.a. Detector.
* QED corrections to photon propagation: In curved spacetime, or in the presence of some background fields, the effective action for Maxwell fields includes curvature terms, which amounts to a violation of the equivalence principle, and in particular predict the possibility of dispersion and superluminal phase velocities.
@ Arguments questioning the validity: Taylor PRD(79); Datta & Yin a0908; Chowdhury et al CQG(12)-a1107; Lebed a1208-MG13; Lebed a1610-conf [breakdown of the equivalence an electron's between passive gravitational mass and energy]; Seveso & Paris AP(17)-a1612 [the WEP is untenable for a quantum particle described by a wave function]; Visser IJMPD(17)-a1705-GRF [from probability quadrupole moments].
@ QED corrections: Shore NPB(02)gq, NPB(02)gq.
@ And quantum gravity: Adunas et al PLB(00)gq, GRG(01)gq; Rabinowitz IJTP(07); Göklü & Lämmerzahl CQG(08)-a0804 [metric fluctuations]; Ali CQG(11)-a1101 [and minimal length, gup]; Ghosh CQG(13)-a1303 [non-commutative geometry and gup]; Kajuri PRD(16)-a1609 [in polymer quantum mechanics and deformed Heisenberg algebra]; Lebed IJMPD(17)-a1711 [hydrogen atom example].
@ Related topics: Camacho IJMPD(01) [decoherence-induced]; Accioly et al IJTP(02) [s = 0, 1 tree-level]; Accioly & Paszko PRD(08) [photon scattering in weak gravitational field], IJMPD(09) [gravitational lensing]; Singleton & Wilburn PRL(11)-a1102 [Hawking radiation and Unruh effect]; Lebed a1205-conf; Accioly & Herdy a1711 [of the classical equivalence principle but not of the weak one].

Tests > s.a. Interferometry.
@ g – 2: Alvarez & Mann PLB(97)gq/95, PRD(96)gq/95; Mann MPLA(97) [leptons].
@ Related topics: Alvarez & Mann in(94)gq/93, PRD(96)gq/95, MPLA(96)gq [Lamb shift], GRG(97)gq/96; Viola & Onofrio PRD(97)qp/96; Onofrio & Viola MPLA(97)qp; Manirul Ali et al CQG(06)qp; Massó PLB(09)-a0902 [Lamb shift, zero-point energy]; Bonder et al PRD(13)-a1305 [with unstable particles]; Altschul et al ASR(15)-a1404 [STE-QUEST space mission]; Barrett et al NJP(15)-a1503 [correlative methods for dual-species quantum tests]; Lebed IJMPD(15)-a1608 [suggested experiments on the inequivalence between gravitational mass and energy]; Orlando et al CQG(16)-a1511 [for quantum superpositions]; Rosi et al nComm(17)-a1704 [atoms in superpositions of internal energy eigenstates].

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 24 mar 2018