|  Klein-Gordon Fields in Curved Spacetimes and Other Backgrounds | 
In General
  > s.a. causality violation; geometric phase;
  huygens' principle; klein-gordon fields [Hamiltonian];
  quantum klein-gordon fields; Superradiance.
  * Dynamics: The most common possible
    forms depend on a conformal parameter ξ, and are given by
gab ∇a∇b φ − (m2 + ξR) φ = 0 , from the Lagrangian density \(\cal L\) = −\(1\over2\)|g|1/2 [gab ∇aφ ∇bφ + (m2 + ξR) φ2] .
  * Coupling to gravity: Minimal coupling
    corresponds to the value ξ = 0; A non-minimal coupling is often introduced from
    discussions of the conformal anomaly (it is required to make the trace of the stress-energy
    tensor vanish); When m = 0, setting ξ = (n−2)/4(n−1)
    (= 1/6 in 4D) with φ → Ω1−n/2φ
    under g → Ω2g makes
    the equation conformally invariant.
  @ General references: Castagnino & Ferraro PRD(89) [modes diagonalizing H];
    Longhi & Materassi IJMPA(99) [global variables];
    Strohmaier LMP(00)mp [Cauchy problem];
    Droz-Vincent CQG(01)gq/00 [mode solution];
    Vaidya & Sparling mp/02 [singular potential];
    Poisson PRD(02)gq [weak curvature, radiative falloff];
    Dai & Stojković PRD(12)-a1209 [massless field, superluminal phase velocity];
    Dereziński & Siemssen PAA(19)-a1709 [evolution equation approach].
  @ Coupling to gravity: Sonego & Faraoni CQG(93) [from the equivalence principle];
    Srivastava et al a1110 [from quantum fluctuations];
    Hrycyna PLB(17)-a1511 [cosmological constraints].
  @ Conformal transformations:
    Faraoni & Faraoni FP(02) [and potential-free form];
    Kaiser PRD(10)-a1003 [with multiple scalar fields].
  @ Non-globally-hyperbolic: Wald JMP(80) [static, recovery of deterministic dynamics];
    Vickers & Wilson gq/01 [with hypersurface singularities];
    Ishibashi & Wald CQG(03)gq;
    Stalker & Tahvildar-Zadeh CQG(04)gq [supercharged Reissner-Nordström];
    Seggev CQG(04)gq/03 [stationary];
    Bullock RVMP(12) [static].
  @ Accelerated observer: Gerlach PRD(88);
    Tian et al gq/06 [Rindler spacetime].
  @ Coupled to gravity: Clayton et al PLA(98)gq [stability];
    Malik CQG(08)-a0712;
    Mendes et al PRD(14)-a1310 [quantum versus classical instability];
    > s.a. solutions of general relativity
      and initial-value formulation.
Specific Types of  Backgrounds
  > s.a. conformal invariance; wave equations.
  @ Spherically symmetric:
    Couch & Torrence GRG(86),
    GRG(88) [transparent];
    Bizoń et al CQG(09) [late-time tails].
  @ Schwarzschild:
    Couch JMP(81) [solutions, and higher spins];
    Pravica PRS(99);
    Zecca NCB(00);
    Roszkowski CQG(01) [energy diffusion];
    Koyama & Tomimatsu PRD(01)gq [tails];
    Roszkowski CQG(01)ap;
    Weinstein NPPS(02)gq/01;
    Casadio & Luzzi PRD(06)ht [minimal coupling, method of comparison equations];
    Dafermos & Rodnianski a0811-ln [and other black-hole backgrounds];
    Thuestad et al PRD(17)-a1705 [and Kerr, including the black-hole interior].
  @ Reissner-Nordström: Ori PRD(98)gq/97 [massless];
    Koyama & Tomimatsu PRD(01)gq/00 [tails];
    Xue et al PRD(02)ht [numerical];
    Crispino et al PRD(09)-a0904 [massless];
    Bizoń & Friedrich CQG(13) [extreme, massless field].
  @ Kerr: Couch JMP(85) [and higher spins];
    Ori PRD(98) [massless];
    Scheel et al PRD(04)gq/03 [tails, numerical];
    Strafuss & Khanna PRD(05)gq/04 [massive, instability];
    Finster et al CMP(05) [propagator],
    CMP(06)gq/05 [decay of solutions];
    Beyer & Craciun CQG(08)gq/06 [new symmetry];
    Gleiser et al CQG(08)-a0710 [late-time tails];
    Burko & Khanna CQG(09)-a0711 [2+1, tails];
    Finster et al CMP(08) [decay];
    Beyer JMP(09);
    Andersson & Blue a0908; 
    Beyer JMP(11)-a1105 [massive field, stability];
    Rácz & Tóth CQG(11) [late-time tails, numerical];
    Beyer et al GRG(13)-a1206 [stability of solutions of the Klein-Gordon equation];
    Burko & Khanna PRD(14) [late-time tails, mode-coupling mechanism];
    Yang et al PRD(14)-a1311 [Green function].
  @ Kerr-Newman black holes: Furuhashi & Nambu PTP(04)gq [massive, instability];
    Konoplya & Zhidenko PRD(13)-a1307 [massive, charged, quasinormal modes, tails and stability];
    Bezerra et al CQG(14)-a1312;
    Besset & Häfner a2004 [KN-de Sitter].
  @ (Anti)-de Sitter: Torrence & Couch CQG(85) [no-scattering conditions];
    Yagdjian & Galstian CMP(09) [fundamental solutions];
    Hrycyna APPB(17)-a1705-conf [higher-dimensional, non-conformal coupling];
    > s.a. AdS spacetime [5D]; BRST quantization.
  @ FLRW spacetime:
    Silbergleit ap/02 [equation of state];
    Copeland et al PRD(09)-a0904. 
  @ Other cosmological backgrounds: Villalba & Isasi JMP(02)gq [with B field];
    Alimohammadi & Vakili AP(04)gq/03 [constant curvature];
    Kozlov & Volovich IJGMP(06)gq [finite-action];
    Malik JCAP(07)ap/06 [perturbed FLRW models, up to second-order];
    Maciejewski et al gq/06 [global dynamics and chaos];
    Kim & Minamitsuji PRD(10)-a1002 [anisotropic spacetimes];
    Holzegel & Warnick JFA(14)-a1209 [asymptotically anti-de Sitter black holes];
    > s.a. bianchi IX models.
  @ Lower-dimensional: Fewster CQG(99)gq/98,
    CQG(99)gq/98 [2D cylinder];
    Harriott & Williams MPLA(01) [2+1, extended source];
    McKeon & Patrushev EPJP(11)-a1009 [2D, canonical structure].
  @ Other backgrounds: Friedman & Morris CMP(97)gq/94 [with closed timelike curves];
    Fernandes et al gq/07 [vacuumless defects];
    Radu & Visinescu MPLA(07)-a0706 [generalized Kaluza-Klein monopole background];
    Arias et al PRD(11)-a1103 [in an inhomogeneous random medium];
    Kamiński a1904
      [background with non-essentially self-adjoint Klein-Gordon operator].
Generalized Backgrounds > s.a. fractals in physics.
  @ Discretizations: Dmitriev et al JPA(06) [non-linear, energy and linear momentum].
  @ Other backgrounds: Freidel et al IJMPA(08)-a0706 [\(\kappa\)-Minkowski spacetime];
    Bibikov & Prokhorov JPA(09) [Y-junction of three semi-infinite axes];
    Krausshar a1103
      [Möbius strip and Klein bottle ion higher dimensions].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 26 dec 2020