|  Lie Algebras | 
In General
  > s.a. examples / types and representations.
  $ Def: A Lie algebra A
    is a vector space on a field K, with a Lie bracket [ , ]: A
    × A → A satisfying:
  - Antisymmetry: [x, y]
    = −[y, x], for all x, y ∈ A;
  - Linearity: [λx, y]
    = λ [x, y],
    [x+y, z] = [x, z] + [y, z],
    for all x, y, z ∈ A,
    for all λ ∈ K;
  - Jacobi identity: [x,
    [y, z]] + [y, [z, x]]
    + [z, [x, y]] =
    0, for all x, y, z ∈ A.
  * Structure constants:
    Given a basis Ti for the Lie algebra,
    they are defined in that basis by [Ti,
    Tj]
    = Ckij
    Tk.
  @ General references: Jacobson 62;
    Serre 64;
    Kaplansky 71;
    Humphreys 72;
    Bourbaki 75;
    Erdmann & Wildon 06 [II/III];
    Hall 06;
    Abbaspour & Moskowitz 07;
    Goze a0805 [rev];
    Steeb et al 12 [problems and solutions];
    Belhaj a1205-ln;
    Feger & Kephart a1206
      [LieART, Mathematica application for Lie algebras and representation theory].
  @ Space of Lie algebras: Ritter mp/03 [topology and invariants];
    Goze m.RA/06-ln [classification, deformations and rigidity];
    Shirokov AACA(10)-a0705 [classification using Clifford algebras].
  @ Related topics:
    Cariñena et al JPA(94) [and Poisson tensors];
    Paal CzJP(03)mp-conf [and Moufang loops];
    Sabinin 04 [mirror symmetry].
Invariants > s.a. Casimir
  Operator; Weil Homomorphism.
  * Result: All invariants of
    a Lie algebra are obtained by expanding the m × m
    determinant
det(t I + ai Ti) = ∑r=0m Pm−r(ai) tr
    in powers of t, and substituting Ti
    to get the polynomials  Pm−r
    (Ti).
  @ References: Di Francesco & Zinn-Justin mp/05 [1-parameter family of vector-valued polynomials];
    Boyko et al JPA(06)mp [moving frame method];
    Hrivnák a1506-PhD [and Jordan algebras].
Subsets, Operations and Other Structure > s.a. Cartan
  Subalgebra; Center.
  * Metric: A metric can be defined on a Lie algebra by
gij = Ckli Clkj ;
    If the Lie algebra is semisimple, this metric is non-degenerate.
  * Deformations and contractions: They
    are mutually opposite procedures, but whereas for every contraction there exists
    a reverse deformation, the converse is not true in general; For examples, global
    deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve
    Lie algebras of Krichever-Novikov type; > s.a. deformation quantization.
  @ Extensions: Landi & Marmo in(89) [and gauge theories];
    Forte & Sciarrino JMP(06)ht/05;
    > s.a. Central Extension.
  @ Contractions:
    Fialowski & de Montigny JPA(05),
    Sigma(06)m.RT [and contractions];
    Nesterenko & Popovych JMP(06)mp;
    Vitiello IJTP(08) [and quantum field theory];
    Doikou & Sfetsos JPA(09)-a0904 [and central extensions].
  @ Other operations:
    de Azcárraga et al NPB(03),
    Izaurieta et al JMP(06)ht [expansion];
    Nurowski JGP(07) [deformations from 2-forms].
Of a Lie Group G
  > s.a. conformal group [SO(3,2)]; lie group;
  lorentz; poincaré;
  SU(2).
  $ Def: The vector space
    of left-invariant vector fields on the Lie group G, together
    with Lie bracket multiplication.
  * Examples: (special group)
    implies (traceless algebra):
| GL(n, \(\mathbb R\)), real matrices; GL(n, \(\mathbb C\)), complex matrices; SL(n, \(\mathbb R\)), real traceless matrices; SL(n, \(\mathbb C\)), complex traceless matrices; | O(n), real antisymmetric matrices; SO(n), real antisymmetric matrices; U(n), complex antihermitian matrices; SU(n), complex antihermitian matrices. | 
  * SU(1,1): Generators
    Ka, a
    = 1, 2, 3, with [K1,
    K2]
    = −i\(\hbar\) K3,
    [K2, K3]
    = i\(\hbar\) K1,
    [K3, K1]
    = i\(\hbar\) K2.
  * SO(2,1), 1+1 de Sitter:
    Generators Pa, a =
    1, 2, and Λ, with [Pa,
    Pb]
    = k εab
    Λ and [Λ, Pa]
    = εab
    Pb.
  @ References: Su qp/06-conf [su(N), Cartan decomposition];
    Isaev & Provorov a2012 [projectors onto invariant subspaces].
Infinite-Dimensional
  > s.a. 2D manifolds; Surfaces [deformations].
  * Examples: > see Kac-Moody,
    Virasoro, and Witt Algebra.
  * History: They first appeared
    in 1909 in a paper by Cartan.
  * Applications: The main ones in
    physics are in gauge theories, where the locality of the gauge transformations
    causes the infinite-dimensionality, and in the study of diffeomorphism groups
    (even for very simple spaces like S1!).
  @ References: Cornwell 89;
    Kac 90;
    Wakimoto 01.
Other Types and Related Concepts > s.a. Drinfel'd
  Doubles; Dynkin Diagrams; Fusion
  Rules [affine]; knot invariants [and quantum groups].
  * Simple: For each
    simple Lie algebra \(\cal G\), one can construct a Hopf algebra
    Uq(\(\cal G\)),
    and a polynomial link invariant.
  * Semisimple: A Lie algebra is
    semisimple if it is a direct sum of simple Lie algebras; > s.a. Wikipedia
    page.
  $ S theorem: Any invariant of
    a compact semisimple Lie algebra is symmetric with respect to the reflections
    which generate the discrete Weyl group of the algebra.
  @ General references:
    Gruber & O'Raifeartaigh JMP(64) [S theorem];
    Cahn 84;
    Yamatsu a1511 [finite-dimensional, and representations].
  @ Bialgebras: Golubchik & Sokolov TMP(06) [and solutions of Yang-Baxter equation].
Generalizations > s.a. poisson
  structure; Quantum Algebra.
  * Soft Lie algebra:
    One with structure functions rather than structure constants, e.g.,
    the 7-sphere.
  * Lie 2-algebra:
    A "categorified" version of a Lie algebra, a category equipped
    with structures analogous those of a Lie algebra, for which the usual laws
    hold up to isomorphism.
  @ Lie algebroids: Iglesias & Marrero;
    Cattaneo LMP(04)m.SG/03 [integration];
    de León et al JPA(05)m.DG/04 [Hamiltonian mechanics];
    Landsman JGP(06)mp/05 [in physics, rev];
    Kotov & Strobl a1004-en [and sigma models];
    Ezuck a2105 [for classical and quantum systems];
    > s.a. unified theories; yang-mills theories.
  @ Superalgebras: Zhang & Gould JMP(05)m.QA/04 [representations of gl(2|2)];
    Faux & Gates PRD(05) [Adinkras graphical technique];
    Gotz et al JA(07)ht/05 [representations of sl(2|1)].
  @ Lie n-algebras: Baez et al m.QA/05 [2-algebras, loop groups and String(n)];
    Papadopoulos CQG(08) [structure constants];
    Figueroa-O'Farrill JMP(08) [with Lorentzian inner product],
    JMP(09)-a0904 [3-algebras, deformations];
    Baez et al CMP(09) [2-algebras and classical strings];
    Chen et al SChM(12)-a1203 [non-abelian extensions of Lie 2-algebras].
  @ Other types:
    Majid JGP(94) [braided, quantum];
    Burde CEJM(06)mp/05 [left-symmetric or pre-Lie algebras];
    Ovsienko a0705,
    AIP(08)-a0810 [Lie antialgebras];
    Goze et al JAPM-a0909,
    Bai et al a1006 [n-Lie algebras];
    Azcárraga & Izquierdo JPA(10)-a1005 [n-ary algebras, rev];
    Dubois-Violette & Landi a1005 [Lie pre-algebras, and quantum groups];
    Leidwanger & Morier-Genoud a1210-conf [Lie antialgebras].
In Physics > s.a. algebras [including
  quantum algebra]; Feynman Diagram; lagrangian
  dynamics [conserved currents].
  @ Texts: Hermann 70;
    Azcárraga & Izquierdo 95;
    Fuchs & Schweigert 97;
    Georgi 99;
    Prakash 03 [including ∞-dimensional];
    Neumaier & Westra a0810-book [classical and quantum mechanics, statistical mechanics].
  @ Specific systems: McLachlan & Ryland JMP(03)mp/02 [classical mechanics];
    Reiterer & Trubowitz a1412
      [graded Lie algebra of general relativity].
  @ Deformations: Chryssomalakos & Okon IJMPD(04)ht [quantum relativistic kinematic algebra];
    > s.a. deformation quantization.
  @ Lie-algebra cohomology and applications:
    de Azcárraga et al RRAC(01)phy/98-proc.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 5 may 2021