|  Numerical Simulations of Black Holes | 
In General > s.a. black holes;
  horizons / initial-value formulation.
  * Approach: Traditionally,
    use finite difference methods, often plagued by instabilities; The three stages
    of binary black hole evolution require different techniques (pre-merger uses PN
    formalism up to O(v7),
    merger is numerical, post-merger–ringdown uses quasinormal modes).
  * 2003: Stable gauge, M Alcubierre.
  * 2004: Stable "long-term"
    evolution with first full binary orbit, B Brügmann at AEI.
  * 2005: First full orbit and
    merger, achieved by various groups with technique by F Pretorius that uses
    punctures rather than excisions.
  * 2006: M Campanelli et al,
    J Baker et al, moving punctures to handle singularities.
  * 2010: High-accuracy
    simulations of inspiral and merger events are done, but still take way too
    much time to be able to run many.
  @ References: Sperhake et al a1107/CRAS [rev]. 
Single Black Holes > s.a. black-hole solutions.
  @ General references: Brügmann PRD(96)gq [adaptive mesh];
    Gómez et al (BBHGCA) PRL(98)gq;
    Hübner CQG(99) [boundaries];
    Scheel et al PRD(02);
    Brandt et al CQG(03)gq/02 [data];
    Anderson & Matzner FP(05)gq/03 [long term evolution];
    Bishop et al PRD(03) [Schwarzschild + massive particle];
    Tichy PRD(09)-a0911 [long-term evolution, pseudospectral methods];
    Yo et al PRD(12)-a1205 [modified BSSN formulation, numerical stability].
  @ From particle collisions: Choptuik & Pretorius PRL(10)-a0908 [ultra-relativistic],
    news sci(10)jan.
  @ Spherically symmetric: Bona et al PRD(95)gq/94;
    Thornburg gq/99/PRD;
    Brewin gq/00-MG9;
    Ruíz et al GRG(08)-a0706 [and axisymmetric, regularization];
    Brewin PRD(12)-a1101 [Schwarzschild spacetime, Einstein-Bianchi system].
  @ Axisymmetric: Brandt & Font gq/97-MG8;
    Gleiser al et PRD(98)gq/97 [spinning black hole];
    Garfinkle & Duncan PRD(01)gq/00 [Brill waves];
    Rinne PhD(05)gq/06;
    Vasset et al a1002-MG12 [excised Kerr spacetime].
  @ Perturbations:
    Krivan et al PRD(97) [Kerr, effects];
    Brandt et al gq/97-MG8;
    Papadopoulos et al PRD(98)gq [gravitational waves];
    Loustó CQG(05)gq [fourth-order algorithm, extreme-mass-ratio Zerilli & Regge-Wheeler];
    > s.a. black-hole perturbations.
  @ Other black holes: Karkowski APPB(06)gq [boosted Kerr];
    Witek et al PRD(10)-a1004 [in AdS spacetime].
  @ Higher-dimensional: Headrick et al CQG(10) [static Kaluza-Klein black holes];
    Wiseman a1107-ch [static and stationary].
Binary Black Holes > see numerical simulations of binary black holes.
Multiple Black Holes
  > s.a. binaries; models in numerical
  relativity; relativistic gravitating objects [two-body problem].
  @ General references: Arbona et al PRD(98)gq/97;
    Brandt & Brügmann PRL(97)gq,
    gq/97-MG8 [punctures];
    Loustó & Zlochower PRD(08)-a0710,
    Galaviz et al PRD(10)-a1004 [moving-puncture approach].
  @ Apparent horizons: Anninos et al PRL(95)gq/94;
    Baumgarte et al PRD(96);
    Thornburg PRD(96);
    Schnetter gq/02.
  @ Other horizons: Schnetter et al PRD(06)gq [dynamical];
    Jaramillo et al PRD(07)gq/06 [isolated, boundary conditions implementation].
  @ Horizon finders, trackers:
    Diener CQG(03) [full 3D];
    Caveny et al PRD(03)gq;
    Thornburg LRR(07)gq/05;
    Lin & Novak CQG(07)gq [3D];
    Cohen et al CQG(09)-a0809;
    Brooks et al GRG(18) [and Cartan invariants].
  @ Related topics: Kidder et al PRD(00)gq [1D, pseudospectral collocation method];
    Alcubierre & Brügmann PRD(01)gq/00,
    et al PRD(01)gq [excision];
    Yo et al PRD(02)gq [stability].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 apr 2018