Fluctuations

In General > s.a. Extended Objects; Thermodynamic Limit.
@ General references: Pécseli 00; Botet & Płoszajczak 02.
@ Equilibrium statistical mechanics: Pitowsky SHPMP(01) [and local observers]; Majka & Wislicki PhyA(03); Kelly et al PhyA-a0704-conf [in a microcanonical ensemble]; Bravetti & López-Monsalvo JPA(15)-a1408 [and Sasaki geometry]; > s.a. statistical mechanics [large deviations].
@ Non-equilibrium systems: Lavenda JMP(80) [driven systems]; Esposito et al RMP(09); Bachmann et al JSP(10) [and current correlators]; Davydov JSP(11) [inequalities].

Effects and Concepts > s.a. arrow of time; dissipation; inertia; modified statistical mechanics; Relaxation; vacuum.
* Fluctuation theorem: A key result in statistical physics that quantifies the ratio of the probabilities of observing entropy-producing and entropy-decreasing fluctuations in a system measured over a finite volume and time span, in terms of the rate of entropy production in the system, the measurement volume, and time.
* Fluctuation-dissipation theorem: A result first proved by Callen & Welton in 1951; In its general form it applies to both classical and quantum systems, and establishes a connection between the response of an equilibrium system to a perturbation and the fluctuations associated with an observable; For example, when a large particle moves through a sea of small particles, on the microscale all particle collisions are elastic; Macroscopically only the large particle is properly resolved, and dissipative forces and fluctuating random forces are observed; The fluctuation-dissipation theorem describes how these forces are connected; > s.a. Wikipedia.
@ Fluctuation theorem: Kurchan JPA(98) [for stochastic dynamics]; Esposito & Van den Broeck PRL(10) [three detailed fluctuation theorems]; Jakšić et al Nonlin(11)-a1009 [non-equilibrium systems]; Sahoo et al JPA(11) [simple models, and atypical trajectories]; Belushkin et al PRL(11) [and hydrodynamics]; García-García et al JSM(12)-a1111 [general approach with joint probability distributions]; Michel & Searles PRL(13) [for a small open subsystem within a large system]; Rahav & Jarzynski NJP(14) [non-equilibrium systems, from equilibrium fuctuations]; Funo et al in(18)-a1803 [quantum]; Rao & Esposito Ent(18)-a1807 [unified perspective on many fluctuation theorems]; Kwon & Kim PRX(19)-a1810 [quantum information theoretic viewpoint]; > s.a. Wikipedia page.
@ Fluctuation-dissipation theorem: Grassia AJP(01)feb [micro-macrophysics relationship]; Raine EJP(05) [and friction]; Báez & Sánchez PhyA(07) [for metastable states]; Marini et al PRP(08) [rev]; Branchina et al a0906 [and harmonic oscillators]; McComb JPA(09) [turbulence]; Bochkov & Kuzovlev PU(15)-a1208 [rev, history]; Das & Frenkel MPLA(15)-a1502 [from unitarity of the S matrix]; Shimizu & Fujikura JSM(17)-a1610-conf [quantum violation]; Tsuji et al PRE(18)-a1612 [for out-of-time-order correlations]; Reggiani & Alfinito a1805 [and electrical noise]; > s.a. semiclassical general relativity; Spontaneous Emission; Wikipedia page.
@ Fluctuation-dissipation theorem, non-equilibrium: Baiesi et al PRL(09); Maes JSP(14) [non-equilibrium baths]; Lippiello et al PRL(14) [heat production]; Komori et al PRD(18)-a1803 [steady-state conditions, and gravitational-wave detectors].
@ Fluctuation-dissipation theorem, violation: Crisanti & Ritort JPA(03) [glassy systems]; Bai PhyA(09) [generalized Langevin equation]; Komatsu et al PRL(11) [observation, in a superspin glass].
@ Classical uncertainty relations: Wang CSF(05); Torrents et al a1112 [small lattice systems, numerical].
@ Related topics: Callen & Welton PR(51) [generalized resistance and irreversibility]; Narnhofer FPL(04) [fluctuation algebra for mean-field theories]; Velazquez JPA(12) [fluctuation geometry]; Chen-Lin et al PRL(19)-a1811 [theory of diffusive fluctuations]; > s.a. interactions [fluctuation-induced interactions].

Specific Theories and Systems > s.a. black-hole perturbations; gas; networks; semiclassical gravity.
@ Fluids: Martynov TMP(04) [statistical theory]; Bertini et al PRL(05) [current fluctuations in lattice gases].
@ Field theories: Cohen-Tannoudji PS(86) [atoms and radiative processes]; Tywoniuk & Ravndal qp/04 [scalar between parallel plates]; Bimonte & Santamato PRA(07)-a0706 [electromagnetic fluctuations near a surface].
@ Near critical points: Joubaud et al PRL(08) [non-Gaussian fluctuations].

Quantum Fluctuations > s.a. quantum field theory [conceptual]; quantum statistical mechanics; sub-quantum theories; uncertainty relations.
* And classical ones: To check for quantum behavior one can look for quantum coherence, both in the measured correlation functions and in the measured power spectrum.
@ General references: Nelson PhyA(84); Smolin CQG(86); Cohen PLA(96) [in terms of $$\langle$$ | ψ$$\rangle$$]; Reynaud et al ed-97; Rosu in(02)gq/00 [in non-inertial frames]; Kanenaga PLA(04) [microcanonical origin]; Brustein & Yarom JSM(08)ht/05 [effect of entanglement]; Khrennikov et al AIP-qp/06 [discussion]; Campisi et al RMP(11)-a1012 [quantum fluctuation relations, self-contained]; Campisi NJP(13) [for ensembles of wave functions]; Peliti & Muratore-Ginanneschi a2006 [and Brownian motion, Fürth's 1933 paper]; Gherardini et al a2006 [role of coherence]; > s.a. radiation [pressure].
@ Dynamics: Brustein & Oaknin PRD(03)ht/02 [classical dynamics]; Chen et al PRA(14)-a1405 [dynamics far from equilibrium]; Benatti et al AdP(15)-a1510 [dissipative dynamics].
@ Quantum fluctuation-dissipation theorem: Hänggi & Ingold Chaos(05)qp/04 [and brownian motion]; Pagel et al NJP(13) [harmonic systems in non-thermal environments]; Åberg PRX(18)-a1601 [fully quantum]; Tsuji & Ueda a1807; Zhang et al a2101 [systems far from equilibrium]; > s.a. open systems.
@ Area scaling of bulk operators: Yarom & Brustein NPB(05)ht/04; Brustein et al PRD(04).
@ And statistical ones: Smolin IJTP(86) [and quantum gravity, interpretation of quantum mechanics]; Anderson & Halliwell PRD(93)gq; Danchev & Tonchev JPA(99)cm/98; Budiyono qp/06v1; Morgan AIP(07)qp/06 [quantum field vs random field]; Berges & Gasenzer PRA(07)cm [for cold Bose gases]; Budiyono a0704v1 [in pilot-wave theory]; Ford & Svaiter PRL(09)-a0809 [classical fluid, and light scattering]; Stimming et al PRL(10)-a0910 [1D many-body quantum system]; Denur AJP(10)nov [and the time-energy uncertainty relation]; Budiyono a1012, PhyA(12)-a1103; Campo et al PRA(12) [optical-lattice fermions]; Kolekar & Padmanabhan CQG(15)-a1308 [indistinguishability from thermal fluctuations]; Bauer & Bernard LMP(14) [thermally-activated quantum jumps]; Schönhammer AJP(14)sep-a2008 [chain of harmonic oscillators]; > s.a. casimir effect [thermal]; modified coherent states [thermal].
@ In specific types of systems: Benatti et al JPA(17)-a1708 [mesoscopic systems].
@ Related topics: Lodahl & Lagendijk PRL(05)qp/04 [transport of quantum noise in random media]; Ford IJTP(07)qp/06-proc [frequency spectrum and probability distribution]; Rodriguez a1201 [and non-locality]; > s.a. entropy [entropic fluctuations]; geometrical phase [effect of variance].
> Consequences: see electricity [contribution to resistance in a metal]; vacuum phenomenology [zero-point fuctuations].

Systems, Phenomenology > s.a. phenomenology of inflation; phenomenology of uncertainty relations.
@ In cosmology: Lombardo & López PRD(05)gq [inflation, in terms of influence functional]; Colin & Valentini PRD(13)-a1306 [suppression at large scales in an expanding space]; > s.a. cosmological constant; cosmological perturbations; early-universe cosmology; matter in quantum gravity [decoherence, particle creation].
@ In QED: Kazakov JPA(07)-qp/06 [fluctuations by a charged particle in an external electric field]; > s.a. neutron [electric dipole moment].
@ Fermion systems: Oaknin PRD(03) [and classical paths]; Westbrook Phy(10) [observation, and use as nK thermometer]; Sanner et al PRL(10) [suppression of density fluctuations].
@ Gravitational systems: Ropotenko a0803 [black holes, quantum vs thermodynamical fluctuations]; > s.a. approaches to quantum gravity; black-hole entropy [corrections]; quantum spacetime; quantum-gravity phenomenology.
@ Other theories: Hartmann et al LMP(04)mp/03 [many-particle systems]; > s.a. quantum field theory effects, in curved spacetime.
@ Measurements: Safavi-Naeini et al PRL(12) + Clerk Phy(12), news ns(12)jan [small silicon bar nanomechanical resonator]; Armijo PRL(12) [observation of quantum phonon fluctuations in a 1D boson gas].
@ Related topics: Munday et al PRA(05) [torque on birefringent plates]; Voronchev et al PRD(12) [in mirror coatings for gravitational-wave interferometers]; De Lorenci & Ford PRD(17)-a1609 [classical enhancement of vacuum fluctuations].