Generalized Thermodynamics |
Extended thermodynamics
> s.a. particle statistics [fractional].
* In general: Developed as
a way out of the paradox of infinite speed of propagation of heat pulses
(parabolic heat conduction equation), i.e., to make it consistent with
special relativity; The first parabolic equation was obtained in 1948 by
Cattaneo, who introduced a relaxation term in th Fourier law, but this
led to other problems; There are now two approaches, rational and
irreversible.
@ References: Müller & Ruggeri 93;
Pennisi et al mp/07;
Carrisi et al a0712
[dense gases and macromolecular fluids].
Relativistic Thermodynamics and Statistical Mechanics
> s.a. heat [conduction]; temperature.
* Status: 2009, The
unification of relativity and thermodynamics has long been a subject of
considerable debate; The reasons are that (i) Thermodynamic variables are
non-local and thus single out a preferred class of hyperplanes in spacetime,
and no consensus has been reached on the correct relativistic transformation
laws for thermodynamic quantities; (ii) There exist different, seemingly
equally plausible ways of defining heat and work in relativistic systems.
* Some approaches:
van Kampen covariant theory, Rohrlich proposal, Ares de Parga &
López-Carrera [PhyA(07)] proposal.
@ General references: Hamity PR(69);
ter Haar & Wergeland PRP(71);
Maartens ap/96-ln;
Lavagno PLA(02) [non-extensive];
Kuckert mp/02-conf [moving frame];
Garcia-Colin & Sandoval-Villalbazo JNT(06)gq/05 [non-equilibrium];
Ares de Parga et al JPA(05);
Lehmann JMP(06)mp [equilibrium];
López-Carrera & Ares de Parga PhyA(07) [transformation of canonical distribution function];
Requardt a0801;
Ares de Parga & López-Carrera PhyA(09) [Nakamura formalism];
Dunkel et al NatP(09)-a0902 [using the past light cone];
Bíró & Ván EPL(10) [from special-relativistic hydrodynamics];
Güémez EJP(10) [first law];
Hakim 11 [graduate text];
Przanowski & Tosiek PS(11);
Becattini PRL(12)-a1201 [and the stress-energy tensor];
Derakhshani a1908
[rev, and black body radiation in moving frames];
Gavassino a2105 [examining assumptions].
@ Notions of equilibrium:
Chirco et al PRD(13)-a1309 [for coupled, parametrized systems];
Becattini et al EPJC(15)-a1403;
Chirco et al CQG(16)-a1503 [and time and energy, reparametrization-invariant systems].
@ Covariant entropy:
Kaniadakis PRE(02),
PRE(05)cm,
PhyA(06)ht;
Nakamura PLA(06) [finite-volume object].
@ Covariant approach, other: Kuckert AP(02) [covariant equilibrium];
Schieve FP(05);
Hosseinzadeh et al PRD(15)-a1506 [and non-commutative space].
@ Types of systems: Cimmelli & Francaviglia GRG(01) [non-viscous, heat-conducting fluids];
Kowalski et al PRD(07)-a0712 [ideal gas];
Tsintsadze & Tsintsadze a1212 [Fermi gas in a strong magnetic field];
Chirco & Josset a1606 [covariant systems with multi-fingered time].
@ In cosmology / curved spacetime: Tolman 34;
Coley PLA(89) [with heat conduction];
Hayward gq/98 [in general relativity];
Vacaru gq/00,
AP(01)gq/00;
Chrobok & von Borzeszkowski GRG(06) [and spacetime geometry];
Klein & Collas CQG(09)-a0810 [with timelike Killing fields];
Frønsdal a1106;
Rojas & Arenas a1110
[how thermodynamics is modified when gravity is included];
Rovelli PRD(13)-a1209 [general relativistic];
Becattini APPB(16)-a1606 [equilibrium];
Bianchi et al GRG(17)-a1306 [pure and mixed states];
Lima et al PRD(19)-a1911 [thermodynamic equilibrium].
@ Quantum gravity-motivated: Fityo PLA(08)-a0712 [deformed spaces with minimal length].
Quantum Thermodynamics > s.a. complexity;
generalized uncertainty principle.
* Idea: 2015, An
emerging research field aiming to extend standard thermodynamics and
non-equilibrium statistical physics to ensembles of sizes well below
the thermodynamic limit, in non-equilibrium situations, and with the
full inclusion of quantum effects; Recent efforts in the field have
been inspired by quantum information theory and its application to
thermodynamic machines with quantum components.
@ Intros and reviews:
Vinjanampathy & Anders CP(16)-a1508 [rev];
Millen & Xuereb NJP(16)-a1509 [rev];
Ribeiro et al AJP(16)dec [pedagogical];
Facchi & Garnero a1705-ln [and canonical typicality];
blog Quanta(17)may;
Alicki & Kosloff a1801;
Potts a1906-ln.
@ General references: Syros LMP(99);
Alicki et al OSID(04)qp [and information, Hamiltonian];
Fröhlich et al in(03)mp/04 [with time-dependent forces];
Sukhanov TMP(08) [with quantum effects];
Horodecki & Oppenheim nComm(13)-a1111 [quantum and nano thermodynamics];
Dorner PRL(13)
+ Mazzola et al PRL(13)
+ news PhysOrg(13)jul;
Kosloff Ent(13)-a1305 [emergence of thermodynamical laws from quantum mechanics];
Binder et al PRE(15)-a1406 [operational thermodynamics of open quantum systems];
Kammerlander & Anders SRep(16)-a1502 [coherence and measurement];
Funo & Quan PRL(18)-a1708 [path-integral approach];
Uzdin & Rahav PRX(18) [global passivity and small systems];
Weilenmann a1807-PhD;
Halpern PhD(18)-a1807 [quantum-information-theoretic thermodynamics];
Floerchinger & Haas a2004 [based on relative entropy, and quantum field theory];
Teixidó-Bonfill et al PRA(20)-a2008 [quantum fields, first law].
@ Resource theory approach: Lostaglio RPP(19)-a1807 [introduction];
Sapienza et al nComm(19)-a1810 [correlations as a resource].
@ Work and the first law: Korzekwa et al NJP(16)-a1506 [work extraction from quantum coherence];
Alhambra et al PRA(18)-a1506 [and reversibility];
Hossein-Nejad et al NJP-a1507
[bipartite systems, work, heat and entropy production];
Alonso et al PRL(16)-a1508 [weakly measured systems];
Alipour et al sRep(16)-a1606;
Whitney PRB(18)-a1611 [non-Markovian];
Ahmadi et al a1912 [heat and work];
de Lima Bernardo a2009 [role of coherence];
Vallejo et al a2103 [two-level systems].
@ Quantum second law: Brandão et al PNAS(15)-a1305 [second law];
Ćwikliński et al PRL(15)
+ Huber Phy(15) [and evolution of quantum coherence];
Alhambra et al PRX(16)-a1601 [as an equality];
Iyoda et al PRL(17)-a1603 [and fluctuation theorem];
Gherardini et al QST(18)-a1706 [entropy production and irreversibility];
Müller PRX(18) [family of second laws?];
Touil et al a2102 [for quantum correlations].
@ Evolution of coherence:
Lostaglio et al PRX(15).
@ Related topics:
Soltanmanesh et al a1909
[thermodynamic behavior of distant entangled particles];
> s.a. arrow of time; gases;
Heat Engines; interpretations of quantum theory;
quantum correlations; Squeezed States;
thermodynamic systems.
Other References
> s.a. thermodyamic laws [generalizations].
@ General: Tisza 66;
Müller & Ruggeri 98 [rational approach];
Treumann PS(99),
PS(99) [Lorentzian];
Bera et al nComm(17)-a1612 [with correlations, universal].
@ Irreversible: Chen JMP(00);
Vasconcellos et al RNC(01) [non-equilibrium statistical ensemble];
Luzzi et al RNC(06);
Jou et al 10;
Gorban et al PhyA(13);
Schellstede et al GRG(13) [relativistic];
Hanel a1608 [thermodynamic action principle].
@ Microcanonical: Gross & Kenney JChP(05)cm.
@ Nanoscale, small-scale systems: Lostaglio et al nComm(15)-a1412 [extended laws];
Halpern a1509-proc [resource theories, physical realizations];
van der Meer et al PRA(17)-a1706 [smoothed generalized free energies];
Ciliberto PRX(17) [rev, experimental and theoretical results].
@ Photon gas with invariant energy scale:
Das & Roychowdhury PRD(10)-a1002;
Zhang et al APP(11)-a1102;
Das et al Sigma(14)-a1411;
Gorji et al JSM(16)-a1606 [in dS and AdS momentum spaces].
@ Other generalizations: Lavenda NCB(99);
Vives & Planes PRL(02) [Tsallis thermodynamics];
Belgiorno JMP(03) [quasi-homogeneous thermodynamics and black holes];
Chavanis PhyA(04) [generalized entropies];
Eichhorn & Aurell PS(14),
Strasberg PRE(19)-a1810 [stochastic thermodynamics].
> Other generalizations:
see ideal gas [DSR, etc]; non-equilibrium
statistical mechanics and thermodynamics; non-extensive statistics;
probability in physics [in general probabilistic theories];
types of entropy [Rényi quantum thermodynamics].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 20 may 2021