Quantum Field Theory Phenomenology |
General Effects
> s.a. quantum field theory techniques [including perturbation]; superselection.
@ Particle production: Srinivasan & Padmanabhan PRD(99)gq/98,
gq/99;
Prodan JPA(99)mp;
Nikolić ht/01;
Haro IJTP(03) [charged Klein-Gordon in electric field];
> s.a. quantum field theory effects in curved spacetime.
@ Radiative corrections: Jackiw IJMPB(00)ht/99.
@ Infrared limit:
Mansfield ht/96-conf [large-distance expansion];
Kjaergaard & Mansfield JHEP(00)ht/99.
@ Fluctuations: Cognola et al PRD(02)ht [via ζ function];
Ford & Roman PRD(05) [stress-energy fluctuations];
> s.a. energy-momentum tensors.
@ Negative energies: Ford & Roman PRD(97)gq/96;
Kuo NCB(97)gq/96;
Fewster & Eveson PRD(98)gq;
Helfer MPLA(98)gq,
ht/98-conf [operational positivity];
Fewster & Teo PRD(99)gq/98,
PRD(00)gq/99 [constraints];
Solomon gq/99 [Dirac-Maxwell theory];
Borde et al PRD(02)gq/01 [spatial distributions];
Davies & Ottewill PRD(02)gq [det];
Graham & Olum PRD(03) [with background V];
Ford & Roman PRD(08)-a0705 [superposition of entangled states],
PRD(07)-a0706 [and energy fluxes];
Solomon Ap(09)-a0808 [massless fermion with no lower bound];
Marsh a0809;
Ford IJMPA(10)-a0911-proc;
Ford & Roman PRD(13)-a1302 [and accelerated observers];
Bekenstein PRD(13)-a1310 [impossibility of making finite systems with negative mass];
> s.a. curved-spacetime effects; QED.
@ Macroscopic phenomena: Blasone et al 11;
> s.a. bose-einstein condensation; topological defects.
@ Related topics: Wightman in(67), 71;
García & Pérez-Rendón CMP(69);
Klauder PRL(72) [structure of operators];
Malin PRD(82) [observer dependence];
Grosse 88;
Moffat PLB(88);
Pérez-Mercader ht/93,
ht/93 [irreversibility];
Dzhunushaliev a1002 [non-perturbative quantum corrections];
Schützhold a1004 [quantum-optics perspective];
Fulling et al PRD(13)-a1212 [torque anomaly for field in a wedge-shaped region];
Jonsson et al PRL(15)-a1405 ["quantum collect calling"];
Kurian & Verzegnassi PLA(16)-a1508
[magnetic effects on the spin and orbital angular momentum of a free electron].
> Specific areas / theories: see astrophysics;
dirac quantum field theory; quantum-gravity phenomenology.
> Phenomena: see Bosons [bosonization]; Classicalization; decoherence;
entanglement; optics; Pair
Creation; particle effects; quantum state evolution
[including decay]; reference frames [accelerated]; scattering.
Statistical Effects, Thermal Quantum Field Theory
> s.a. effective quantum field theories [finite T];
particle statistics; statistical mechanics.
* Applications: Study of phase
transitions in the early universe, and hadronic matter at high energy density.
* Branches: Perturbative methods
in Euclidean approach (use generating functional for Green functions with
positive temperature), perturbative methods in real time (thermofield dynamics),
and lattice approximations with Monte Carlo methods (non-perturbative).
@ References: Hardman et al PLA(90);
Henning PRP(95);
Greiner & Müller PRD(97) [equilibrium and semiclassical dynamics];
Bros & Buchholz NPB(02) [asymptotic dynamics];
Khanna et al 09;
Stoof et al 09 [ultracold quantum fields];
> s.a. casimir effect.
Different Backgrounds > s.a. curved-spacetime effects;
early-universe cosmology [including quantum → classical].
@ External fields and media:
Langmann mp/05-en [pedagogical];
Gavrilov & Gitman PRL(08)-a0805 [maximum electric field];
Fialkovsky & Vassilevich IJMPA(12) [in graphene].
@ Non-smooth: Bordag & Vassilevich PRD(04)ht;
Fichera et al NPB(05) [on d-dimensional defects in d+1].
@ Different topology: Bezerra & Rego-Monteiro PRD(04)ht [finite box];
> s.a. boundaries in field theory.
@ Thermal gravitons: Arteaga et al PRD(04) [scalar field theory in Minkowski].
Related Concepts > s.a. boundaries
in field theory; locality; mirrors;
quantum field theory states [including non-equilibrium].
* Short-distance structure:
Look at the N-point functions.
* Quantum interest: Any
negative energy flux in a free quantum field must be preceded or followed
by a positive flux of greater magnitude; The greater the surplus of
positive energy, the further apart the positive and negative fluxes are,
and the maximum possible separation between the positive and negative
energy decreases the larger the amount of negative energy.
@ Short-distance structure: Mohrdieck JMP(02),
Bostelmann JMP(05)mp/04 [and phase space structure];
Bostelmann et al CMP(09)-a0711 [scaling algebras].
@ Quantum interest: Ford & Roman PRD(99)gq;
Pretorius PRD(00)gq/99 [scalar];
Teo & Wong PRD(02)gq [2D];
Abreu & Visser PRD(09)-a0808 [3+1, proof of one version];
Solomon APR-a1007 [counterexample to conjecture].
@ Quantum inequalities: Ford et al PRD(98)gq/97 [and singular energy densities],
PRD(02)gq [4D, non-existence];
Flanagan PRD(02)gq,
Fewster PRD(04)gq [2D];
Fewster & Hollands RVMP(05)mp/04 [2D];
Fewster mp/05-proc,
mp/05-proc [rev];
Fewster & Pfenning JMP(06)mp,
Fewster GRG(07)mp/06 [and local covariance];
Hu et al PRD(06)gq [spin-3/2 field];
Fewster & Smith AHP(08)-gq/07 [in curved spacetime];
Solomon ASTP(11)-a1003,
a1012 [states violating quantum inequalities];
Solomon a1103 [comment on a proof];
Cadamuro a1912-proc [quantum energy inequalities];
> s.a. dirac fields; energy conditions.
@ Measurements: Šafránek et al a1511 [relativistic quantum metrology, for Gaussian states];
> s.a. measurement.
> Other: see anomalies;
Contraction; correlations;
energy conditions; theta sectors;
vacuum; Virtual Particles.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 1 jun 2020