Black-Hole Perturbations  

In General blue bullet s.a. black-hole phenomenology; quasinormal modes; chaotic motion; horizons; numerical black holes; quantum black holes.
* Stability: Stationary (M > 0) black holes are stable under local perturbations; The proof uses the fact that the linearized field equations imply the vanishing of an integral which would not vanish for frequencies with positive imaginary part; M < 0 black holes are unstable.
@ General references: Pani IJMPA(13)-a1305-ln [techniques and open problems].
@ Stability: Cohen & Wald JMP(71) [+ point charge]; Wald JMP(73), CQG(86); in Chandrasekhar 83; Kokkotas PRD(88); Whiting & York PRL(88); Whiting JMP(89) [Kerr black hole]; Wald JMP(92); Monteiro et al PRD(09)-a0903 [rotating black holes]; Burinskii GRG(09)-a0903 [electrovac black holes]; Monteiro PhD(05)-a1006 [classical and thermodynamic]; Prabhu & Wald CMP(15)-a1501; Coutant et al CQG(16)-a1601 [dynamical instabilities in general]; Dafermos et al a2104 [stability of Schwarzschild family of solutions]; > s.a. black-hole geometry [black strings]; black-hole solutions; lovelock gravity; schwarzschild spacetime.
@ Evaporating, late-time behavior: Barack PRD(99)gq/98; Parikh & Wilczek PLB(99)gq/98; Hod PRD(99)gq, PRL(00)gq/99.
@ Changing M and a: Petrich et al PRL(88) [accreting]; King & Kolb MNRAS(99)ap [binaries]; Abramowicz et al ed-10 [accretion].
@ Horizon fluctuations: Iso et al PLB(11)-a1008 [non-equilibrium]; > s.a. black-hole entropy; gravitational thermodynamics.
@ Related topics: Loustó & Whiting PRD(02)gq [Ψ and (ψ4, ψ0)]; Cartas-Fuentevilla JMP(00)gq/02 [conservation laws]; Sinha et al FP(03)gq/02 [backreaction and influence functional]; Perjés & Vasúth CQG(03)gq [principal null directions]; Birmingham & Carlip PRL(04)ht/03 [non-quasinormal modes]; Ferrari et al PRD(06) [extended sources, general hybrid approach]; Zenginoğlu PRD(11)-a1104 [geometric framework]; > s.a. multipoles [polarizability].

Perturbations around Kerr > s.a. modified general relativity; kerr spacetime [stability].
* Description: Massless fields of spin s = 1/2, 1, 3/2, or 2 are usually described in terms of Weyl scalars ψ4 and ψ0, which satisfy Teukolsky's complex master equation, a wave equation with added curvature terms, and respectively represent outgoing and ingoing radiation; They can also be described in terms of (Hertz-like) potentials Ψ in outgoing or ingoing radiation gauges; Equations describing massive spin-1 fields have not been shown to be separable.
@ Linear: Misner BAPS(72) [scalar, stability]; Kalnins et al PRS(96) [spin-1 and 2]; Fernandes & Lun JMP(97) [gauge-invariant]; Barack & Ori PRL(99) [decay of scalar perturbations]; Campanelli et al CQG(01)gq/00; Moreno & Núñez IJMPD(02)gq/01; Ori PRD(03)gq/02 [particles/objects]; Loustó CQG(05)gq [in terms of Weyl scalars]; Yunes & González PRD(06)gq/05 [tidally perturbed]; Wang BJP(05)gq [rev]; Núñez et al PRD(10)-a1002; Lukes-Gerakopoulos et al PRD(10) [observable signature]; Aksteiner & Andersson CQG(11) [various spins]; Pani et al PRD(12)-a1209 [massive vector (Proca) fields]; Aksteiner & Andersson CQG(13)-a1301 [non-radiating gravitational modes and conserved charges]; Berti & Klein PRD(14)-a1408 [mixing of spherical and spheroidal modes]; Casals & Zimmerman PRD(19)-a1801 [and late-time tails]; Aksteiner & Bäckdahl PRL(18)-a1803 [all local gauge invariants]; Grant & Flanagan a2005 [conserved currents].
@ Teukolsky equation: Hartle & Wilkins CMP(74); Campanelli & Loustó PRD(97)gq [regularization]; Campanelli & Loustó PRD(98), et al PRD(98), PRD(98)gq [Cauchy data]; Bini et al PTP(02)gq; Pazos-Ávalos & Loustó PRD(05)gq/04 [numerical]; Fiziev CQG(10)-a0908 [exact solutions].
@ Higher-order: Campanelli & Loustó PRD(99)gq/98; Green et al a1908 [Teukolsky framework].

Other Single Black Holes > s.a. horizons; models in numerical relativity; perturbations in general relativity; quantum black holes.
@ Reissner-Nordström: Burko PRD(99)gq [axial]; Perjés GRG(03)gq/02; Berti & Kokkotas PRD(03)ht; Motl & Neitzke ATMP(03)ht [asymptotic frequencies]; Pfister PRD(03) [t-independent]; Dotti & Gleiser CQG(10)-a1001 [instability in inner static region]; Aretakis CMP(11) [extreme, scalar perturbations]; Hod PLB(12)-a1304, PLB(13) [stability under charged scalar perturbations]; Hod PLB-a1410 [weakly-magnetized SU(2) black holes]; Luk & Oh DMJ(17)-a1501 [instability of the Cauchy horizon under scalar perturbations]; Sela PRD(16)-a1510 [extremal, late-time decay of perturbations]; Giorgi a1904-PhD [stability, linear gravitational and electromagnetic perturbations]; Dotti & Fernández PRD(20)-a1911.
@ Reissner-Nordström-AdS: Berti & Kokkotas PRD(03)gq.
@ Kerr-NUT: Bini et al PRD(03)gq; Mukhopadhyay & Dadhich CQG(04)gq/03, gq/04-MG10 [scalar and spinor].
@ Other types: Onozawa et al PRD(97) [supersymmetric]; Perjés gq/02/CQG [rotating, and Λ]; Das & Shankaranarayanan CQG(05) [generic singularities]; Hamilton a0706 [self-similar, Newman-Penrose formalism]; Dafermos CMP(14)-a1201 [without spacelike singularities].
@ In other theories: Molina et al PRD(10)-a1005 [Chern-Simons-modified gravity]; Varghese & Kuriakose MPLA(11)-a1010 [Hořava gravity, electromagnetic and Dirac perturbations]; Kobayashi et al PRD(12)-a1202, PRD(14)-a1402 [scalar-tensor theory, around a static, spherically symmetric solution]; Pratten CQG(15)-a1503 [f(R) gravity].
> Other types: see black-hole geometry [black rings]; higher-dimensional black holes; kerr-newman solutions; schwarzschild spacetime; schwarzschild-de sitter spacetime.

Colliding Black Holes > s.a. models in numerical relativity.
@ General references: Hawking PRL(71); Loustó & Price PRD(97)gq, PRD(98)gq/97 [data]; > s.a. orbits of gravitating bodies.
@ Close limit: Pullin PTP(99)gq-in; Gleiser et al NJP(00)gq; Khanna PRD(01)gq, PRD(02)gq.
@ Approach to stationarity: Hod PRL(00)gq/99; Kamaretsos et al PRD(12)-a1107 [ringdown signals and progenitor parameters].
@ Related topics: Rácz & Wald CQG(96)gq/95 [global extensions].

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 20 apr 2021