|  Gravity as an Emergent Phenomenon | 
In General
  > s.a. emergence [including spacetime from entanglement]; entropic
  gravity; gravitation; gravitational thermodynamics;
  models for spacetime.
  * Idea: The gravitational field
    as a metric, and its dynamics, are not fundamental but arise as an effective
    theory from some other microscopic degrees of freedom; The first widely known
    proposal was Sakharov's 1967 induced gravity, but many other theories have
    been proposed since.
  * 2016: A popular idea is that
    spacetime and gravity emerge together from the entanglement structure of an
    underlying microscopic theory.
  * Issue: Arguments against emergent
    gravity have used the Weinberg-Witten Theorem, but many current proposals are
    based on theories that are not Lorentz-covariant.
  @ Reviews: Padmanabhan AIP(07)-a0706;
    Sindoni Sigma(12)-a1110 [overview];
    Carlip a1207 [challenges];
    Padmanabhan AIP(12)-a1208 [conceptual aspects];
    Padmanabhan MPLA(15)-a1410. 
  @ Conceptual: Padmanabhan IJMPD(08);
    Linnemann & Visser SHPMP-a1711 [comments on emergence of gravity].
  @ General references: Hu gq/96-conf [geometro-hydrodynamics];
    Barceló et al IJMPD(01)gq;
    Jenkins IJMPD(09)-a0904-GRF [difficulties];
    Lee IJMPA(09)gq/06 [from interacting simplices];
    Padmanabhan a0910-conf,
    JPCS(11)-a1012;
    Hu IJMPD(11)-a1010-fs [and non-equilibrium thermodynamics of classical matter];
    Sindoni a1105 [group-field-theory perspective];
    news dw(11)aug;
    Kolekar & Padmanabhan PRD(12) [action principle from fluid-gravity correspondence];
    Wetterich PLB(12)-a1203 [ambiguity in which collective field is the effective metric];
    Consoli & Pluchino a1311 [experimental signatures];
    Marolf PRL(15)-a1409 [need for kinematic non-locality];
    Bhattacharya & Shankaranarayanan IJMPD(15)-a1505-GRF;
    Zatrimaylov JCAP(20)-a2003 [critique].
  @ Phenomenology, tests: Brouwer et al MNRAS(17)-a1612 [using weak gravitational lensing];
    Diez-Tejedor et al MNRAS(18)-a1612 [vs MOND, and dwarf spheroidals];
    Iorio EPJC(17)-a1612 [and anomalous perihelion precessions];
    Lelli et al MNRAS(17)-a1702 [and the galaxy Radial Acceleration Relation];
    Tortora et al MNRAS(17)-a1702 [and early-type galaxies];
    Pardo JCAP(20)-a1706 [isolated dwarf galaxies];
    Tamosiunas et al JCAP(19)-a1901 [at galaxy cluster scales].
@ Analog gravity phenomenology:
    Klidis & Spyrou CQG(00) [in astrophysics];
    Faccio et al ed-13.
  > Related topics: see Deformations;
    duality; lensing; non-commutative
    gravity and spacetime; topology change;
    Weinberg-Witten Theorem.
  > Related theories: see Induced
    Gravity; Matrix Models; modified electromagnetism;
    non-commutative gauge theories [electromagnetism].
  > Online resources:
    see Wikipedia page.
Effective Metrics and Analog Gravity Models > s.a. lorentzian
  geometry; qft effects in curved spacetime; sound.
  * Idea: The propagation
    of perturbations in certain condensed matter systems is equivalent to
    the dynamics of quantum fields in curved spacetimes.
  @ Reviews: Barceló et al LRR(05)gq;
    Unruh & Schützhold ed-07;
    Visser & Weinfurtner PoS-a0712;
    Visser & Molina-Paris NJP(10)-a1001;
    Barceló et al LRR(11);
    Leonhardt et al NJP(12) [focus issue];
    Visser LNP(13)-a1206;
    Jacquet et al PTRS(20)-a2005.
  @ General references: Barceló et al CQG(01)gq [field modes in non-trivial background];
    Visser et al GRG(02)gq/01-proc;
    Barceló et al NJP(04)gq [causal structure];
    Okninski gq/05 [from scalar field];
    Weinfurtner et al JPA(06)gq/05-conf [analog of Klein-Gordon field in curved spacetime];
    Milgrom PRD(06) [particles and mass];
    Liberati et al a0909-proc [general aspects, diffeomorphism invariance];
    Smolyaninov & Hung JOSA(11)-a1104 [modeling the flow of time];
    Chaline et al LNP(13)-a1203 [surface waves and dispersive horizons];
    Fewster & Liberati GRG(14)-a1402 [GR20 report];
    Hossenfelder & Zingg CQG(17)-a1704 [the class of metrics that have an analogue];
    Crowther et al a1811 [what we cannot learn];
    Iorio a2005-conf [Dirac materials];
    > s.a. Elasticity; finsler geometry;
      Lorentz-Fitzgerald Contraction; optics [optical
      geometry]; perfect fluids; sound [acoustic geometry];
      spacetime [geometry]; types of quantum field theories.
@ Quantum gravity simulation: Conti PRA(14)-a1406 [non-paraxial non-linear optics].
  @ In a dielectric: De Lorenci & Klippert PRD(02) [electromagnetism in non-linear media];
    Novello & Perez Bergliaffa AIP(03)gq [flowing dielectric];
    Cacciatori et al NJP(10) [refractive index perturbations];
    Thompson & Frauendiener PRD(10)-a1010 [general metrics];
    Fathi & Thompson PRD(16)-a1602;
    Schuster & Visser CQG(19)-a1808.
  @ In a boson gas / BEC: Chapline & Mazur APPB(14)gq/04 [superfluid condensate model, and spinning cosmic strings];
    Liberati et al PRL(06),
    CQG(06)gq/05 [quantum gravity analog from BECs];
    Weinfurtner et al PRD(07)gq [boson gas, signature change];
    Bravo et al EPJQT-a1406,
    Hartley et al PRD(18)-a1712 [simulation of gravitational waves];
    Szpak a1410-GRF [ultra-cold atoms in optical lattices];
    > s.a. bose-einstein condensates.
  @ From non-linear field theory:
    Novello & Goulart CQG(11)-a1102 [Lagrangian for field + analog metric];
    Goulart et al CQG(11)-a1108.
  @ Other models: Sepehri et al EPJB(16)-a1606 [f(R) analog from defects in graphene];
    Datta PRD(18)-a1804 [analog metric for gravitational wave];
    Kishore Roy et al a2011 [granular matter].
  > Specific types of metrics: see black-hole analogs;
    de sitter space; FLRW models [condensed matter analogs].
Emergent Gravity Proposals
  > s.a. approaches; models of spacetime
  [including internal relativity]; renormalization; time.
  @ General references: Hu gq/06-talk [and stochastic gravity];
    Hedrich a0902;
    Hu JPCS(09)-a0903;
    Mannheim GRG(11)-a0909,
    MPLA(11)-a1005-conf
      [intrinsically quantum-mechanical gravity and cancellation of cosmological-constant and zero-point energies];
    Yang MPLA(10)-a1007 [using a spacetime symplectic structure],
    JPCS(12)-a1111 [and background-independent quantum gravity];
    Mandrin a1505 [non-dynamical approach];
    Erlich CQG(18)-a1807 [stochastic framework];
  > s.a. gravity theories.
@ Bose-Einstein condensate:
    Consoli CQG(09);
    Jannes PhD(09)-a0907;
    Sindoni PRD(11)-a1011 [multi-BEC hydrodynamics];
    Belenchia et al PRD(14)-a1407.
@ Other condensed-matter-type proposals:
    Volovik 03 [low-energy behavior of Fermi liquids];
    Girelli et al PRD(09)-a0806;
    Jannes in(09)-a0810 [collective excitations];
    Xu & Hořava PRD(10)-a1003 [Bose Liquid on an fcc lattice];
    > s.a. quantum-spacetime proposals.
@ From entanglement, Verlinde theory:
    Verlinde a1611 + news es(16)nov [and additional, dark gravitational force];
    Hossenfelder PRD(17)-a1703,
    Dai & Stojković PRD(17)-a1706 [covariant version], JHEP(17)-a1710 [inconsistencies];
    > s.a. entanglement in field theory and spacetime.
@ U(1) gauge fields on a non-commutative spacetime:
    Lee et al JHEP(12)-a1206;
    Yang IJMPA(15)-a1312 [quantization].
@ From fundamental spinors: Kober PRD(09)-a0812;
    Finster a1409 [causal action principle, system of relativistic fermions].
@ Other proposals: Sernelius IJMPA(09)-a0804 [as Casimir interaction];
    Padmanabhan ASL(09)-a0807-in [from a theory of null vectors, and the cosmological constant];
    Kabe a1002/PRD;
    Marin a1206, a1206 [from "arrangement field theory" on a non-ordered space-time];
    Sexty & Wetterich NPB(12)-a1208 [2D non-linear σ-model, numerical simulations];
    de Souza a1212 [from discrete interactions, and cosmological acceleration];
    Matsueda a1310 [from the Fisher information metric];
    Anastasiou et al PRL(14)-a1408 [as convolution of left and right Yang-Mills theories];
    Diaz et al a1609 [gravity from bilocality];
    Mohan a1802 [tracing out fermions from an interacting quantum field theory];
    Gallego Torromé IJGMP(20)-a2005;
    Das & Sur a2105-GRF
      [quantum universe with matter and a cosmological constant];
  > s.a. cosmological expansion.
Gravity is the thermodynamic limit of the statistical mechanics of "atoms of spacetime."
  — Thanu Padmanabhan, during a talk at Perimeter Institute.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 19 may 2021