Non-Commutative Gauge Theories |
In General
> s.a. non-commutative field theories \ types of gauge theories.
@ Reviews: Wess JPCS(06)ht;
Blaschke et al Sigma(10)-a1004 [on flat Groenewold-Moyal spaces].
@ General references:
Dubois-Violette et al JMP(90),
Chan & Tsou AP(90);
Akman JPAA(97)qa/95 [Lagrangian quantization];
Langmann APPB(96)ht/96;
Carow-Watamura & Watamura CMP(00) [on fuzzy sphere];
Terashima JHEP(00)ht [and ordinary gauge theory];
Madore et al EPJC(00)ht;
Morita ht/00;
Bak et al PLB(01);
Brace et al IJMPA(02)ht/01-in;
Wess CMP(01) [non-abelian];
Hu & Sant'Anna IJTP(03);
Floratos & Iliopoulos PLB(06)ht/05;
Behr PhD(05)ht [non-constant commutators];
McCabe IJTP(06);
de Goursac JPCS(08)-a0710 [effective action];
Rosenbaum et al Sigma(08)-a0807 [spacetime diffeomorphisms];
de Goursac PhD(09)-a0910;
Weiß PhD(09)-a1003 [geometric, deformation quantization of principal fibre bundles];
van Suijlekom a1110 [and higher-derivative gauge theories];
Masson AIP(12)-a1201 [mathematical structures];
Chandra a1301-PhD;
Géré et al PRD(14)-a1312;
Boeijink & van den Dungen JMP(14)-a1405 [on almost-commutative manifolds];
Kupriyanov & Vitale JHEP(20)-a2004 [novel approach].
@ Existence, no-go results: Saha et al ht/06-wd [not every gauge theory can be extended to non-commutative space];
Arai et al PLB(08) [circumventing no-go theorem];
Hanada a1604-proc [existsnce of a non-perturbative formulation].
@ On a curved non-commutative spacetime:
Behr & Sykora NPB(04);
Burić et al JHEP(10)-a1003,
PRD(12);
Schenkel & Uhlemann Sigma(10)-a1003 [U(1) gauge theory].
@ Hamiltonian / Lagrangian formulation: Kase et al PTP(99)ht/98,
PTP(99) [Lagrangian];
Cuesta et al ht/06 [non-commutative phase space];
Amorim & Farias PRD(02)ht/01 [non-abelian, Hamiltonian];
Banerjee PRD(03) [non-commutative E fields and consistency].
@ Path-integral quantization: Habara PTP(06)ht;
Zobin qp/06.
@ Lattice gauge theory: Balachandran et al JGP(98)hl/96;
Ambjørn et al JHEP(00)ht;
O'Connor & Ydri JHEP(06)hl [U(1), Monte Carlo].
@ Monopoles / solitons: Baez et al CMP(00)ht/98;
Gopakumar et al JHEP(00);
Jiang ht/00;
Nekrasov ht/00-ln.
> Related topics:
see BRST transformations; instantons;
renormalization; Wilson Loop.
Electrodynamics, QED
@ General references: Riad & Sheikh-Jabbari JHEP(00)ht [dipole moments];
Kruglov EP(03)qp/02;
Morita PTP(03)ht/02 [Lorentz-invariant];
Berrino et al PRD(03);
Gaete & Schmidt IJMPA(04)ht/03 [Coulomb's law];
Kauffman IJTP(06)qp/05 [diagrammatic, including discrete];
Carone & Kwee PRD(06)hp [Lorentz-invariant];
Calmet EPJC(07)ht/06;
Yang EPJC(09)-a0704 [as large-N gauge theory];
Madore IJGMP(08) [and Schwinger's chiral action];
Yang IJMPA(09) [and emergent gravity];
Balachandran et al IJMPA(09) [on the Groenewold-Moyal plane];
Jafari a0912;
Burić et al PRD(11)-a1009 [chiral fermions];
van den Dungen & van Suijlekom JNCG(13)-a1103;
> s.a. modified electromagnetism.
@ Vacuum birefringence: Abel et al JHEP(06);
Maceda & Macías PLB(11).
@ Other phenomenology: Chaichian et al PRL(01)ht/00 [H atom, Lamb shift];
Fu & Sheng PRD(07)ht [corrections to muon pair production];
Zahn PhD(06)-a0707 [dispersion relations];
Ilderton et al Sigma(10)-a1003 [effects of strong background fields];
Ghoderao et al MPLA(19)-a1806 [bound on non-commutativity scale];
> s.a. photon phenomenology in quantum gravity.
Different Theories > s.a. BF theory; GUTs;
quantum constrained systems; topological field theories.
* Standard model: In the
non-commutative formulation of Connes and Chamseddine, one of the three
generations of fermions has to possess a massless neutrino; Although the
theory is an essentially classical one, it predicts what is expected to
be approximately the right value for the Higgs mass.
@ Standard model: Kastler & Schücker TMP(92)ht/01;
Sładkowski IJTP(96)ht/94;
Brout NPPS(98)ht/97;
Wulkenhaar ht/97;
Martín et al PRP(98);
Schücker LNP(05)ht/01,
ht/03-en;
Wohlgenannt ht/03-conf;
Martinetti mp/03 [intro];
Khoze & Levell JHEP(04);
Barrett & Dawe Martins JMP(06),
Dawe Martins JMP(06) [vacuum];
Barrett JMP(07)ht/06 [Lorentzian];
Connes JHEP(06)ht [with neutrino mixing];
Chamseddine & Connes JGP(08)-a0706,
PRL(07)-a0706 [explanation of standard model];
Sakellariadou IJMPD(11)-a1008-fs;
Farnsworth & Boyle NJP(14)-a1401,
NJP(15)-a1408 [simpler reformulation, and non-associative geometry];
Chamseddine et al JHEP(14)-a1411 [from higher-degree Heisenberg commutation relation];
Martinetti a1503-proc [twisted spectral geometry];
Brouder et al a1504
[as an extension of the non-commutative algebra of forms];
Boyle & Farnsworth JHEP-a1604 [new algebraic structure];
Sakellariadou a1605-proc;
Lizzi a1805-proc [rev];
Devastato et al IJMPA(19)-a1906 [rev];
Bochniak & Sitarz a2001 [without fermion doubling];
Filaci et al a2008 [Twisted Standard Model].
@ Standard-model extensions:
Marculescu ht/05;
Stephan PRD(09)-a0901;
van den Broek & van Suijlekom JHEP(13)-a1211;
Stephan a1305-proc;
van den Broek a1409-PhD [MSSM].
@ Unified theories:
Lizzi et al MPLA(96);
Chamseddine & Connes FdP(10)-a1004 [all interactions, including gravity];
Sakellariadou JPCS(15)-a1503;
Nguyen a1510-conf.
@ Other theories: Lizzi et al MPLA(98) [mirror fermions];
Das & Rey NPB(00)ht [open Wilson lines];
Saraikin JETP(00)ht [Morita equivalence];
Okawa & Ooguri NPB(01) [coupling to gravity];
Mesref NJP(03)ht/02 [map ordinary → deformed gauge theory];
Krykhtin G&C(03) [Yang-Mills + matter];
Slavnov PLB(03) [U(n)];
Caporaso et al ht/04-fs [topologically massive];
Banerjee et al PRD(04)ht [and Lorentz symmetry];
Ivanov & Zupnik TMP(05) [supersymmetric gauge theories];
Stern PRD(08) [particlelike solutions];
Armoni PLB(11) [2D U(N) theories];
Ahmadiniaz et al JHEP(19)-a1811 [U(N) Yang-Mills theory];
Sakellariadou & Sitarz PLB(19)-a1903 [Fermionic spectral action and neutrino masses];
> s.a. chern-simons theory; higgs mechanism;
non-commutative gravity.
> Related topics:
see causality and causality violations;
spin networks [gauge networks]; theta sectors.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 16 aug 2020