Spacetime |
Historical / Philosophical Aspects
> s.a. Event; philosophy of science;
physics; quantum cosmology.
* History: 1754, D'Alembert, in the
article on dimensions in the Encyclopédie, v4 p1010, proposes to use
time as a fourth dimension [@ Lang 87, p5]; 1921, Weyl
identifies the mathematical structures in relativistic spacetime; 1924, Reichenbach
proposes a conceptual axiomatization; 1972, Ehlers-Pirani-Schild propose a physical
axiomatization of the conformal structure.
* Substantialism: (Spatialism,
Absolutism) Spacetime is a fundamental entity whose existence is intrinsic, it contains
events but nothing changes (cf. Parmenides); Dynamics is a derived property (Newton,
Grünbaum, ...); Quite an old point of view, but subject to criticism based on
radical local indeterminism.
* Relationism: (Process philosophy)
There are just spatial and temporal relations between bodies-events; Time-becoming
is the fundamental ontological feature, everything else is emergent; Substance is
just a cross-section of a basic process (Aristotle, Leibniz, ...); > s.a.
Physical Process; Relationalism.
* Debate: Some claim that the
relationalist position has been rejected by the developments in physics, and
in relativity one usually assumes implicitly that spacetime is a physical object
like others; But recently there have been ideas (especially from quantum gravity)
to replace it with other more fundamental notions; Besides, in quantum theory, the
(initial) position of Heisenberg that only observable quantities should enter the
theory, and Chew's S-matrix approach to quantum field theory, discard the notion of
spacetime; Most positions are intermediate; For example, Earman has advocated a
third option based on Leibniz algebras.
* Conventionalism: The philosophical
theory according to which the real world does not imply any particular geometrical
model, and all models which give equal experimental predictions should be considered
equivalent; Proposed by Carnap; > s.a. formulations
of general relativity [flat spacetime]; spatial
geometry of the universe.
Geometry and Phenomenology
> s.a. atomic physics [interferometry]; geometry;
models of spacetime; quantum spacetime;
riemann tensor; singularities.
* Measuring curvature: A spacetime is locally flat iff
there is no geodesic deviation for timelike geodesics (or, equivalently, for null geodesics).
@ Measurement theory: Møller 72, ch8;
Desloge FP(89) [device];
Mashhoon PLA(90) [limitations],
in(98)gq/00;
Coleman & Korté in(92);
Boniolo & de Felice FP(00) [philosophical foundations];
Sen CMP(08) [and notion of a geometrical point];
Amelino-Camelia & Stachel GRG(09) [spacetime intervals];
de Felice & Bini 10;
Bonder AIP(12)-a1204 [with quantum particles];
Aguilar et al MPLA(12)-a1205 [realistic probes of spacetime structure];
Wohlfarth & Pfeifer PRD(13)-a1210 [from effects on gyroscope systems];
Moretti & Di Criscienzo FiP(13) [no curvature];
Kurylev et al a1405 [from light propagation];
Braun & Fischer a1502 [limits to experimental precision];
Brody & Hughston a2011 [manifestly covariant framework];
> s.a. 3D gravitation [from holonomies].
@ Spatial distances, lengths: Schmidt GRG(96)gq/95;
Mashhoon & Muench AdP(02)gq [accelerated frames];
MacLaurin a1911-proc.
@ Visualization: Nichols et al PRD(11)-a1108,
Zhang et al PRD(12),
PRD(12)-a1208 [via frame-drag vortexes and tidal tendexes];
Lake PRD(12)-a1207,
Abdelqader & Lake PRD(12)-a1207,
PRD(13)-a1308 [curvature visualization via gradient flows];
Chruściel et al PRD(12)-a1211 [2D projection diagrams].
@ Related topics: Itzhaki PRD(96)ht/95 [and black-hole information];
Liu & Mashhoon PLA(00)gq [in Kaluza-Klein theories];
Bahder AJP(01)mar-gq [spacetime "navigation"];
Crawford & Tereno GRG(02)gq/01 [and observers];
Mensky G&C(02)gq [in terms of paths];
Sorkin a0911-in [Riemannian metric?];
Tartaglia et al AF(11)-a1109 [relativistic navigation system];
Podolský & Švarc PRD(12)-a1201 [interpretation using geodesic deviation];
Kar & Rajeev PRD(12)-a1207 [non-Riemannian metric from a scalar quantum field theory].
> Related topics: see Hole Argument;
Spacetime Algebra; special subsets;
topology; Tropes; types
of spacetimes; interpretations of quantum mechanics.
References > s.a. models [evolving space vs spacetime];
time [block universe vs evolution].
@ General: Mach 06;
Sklar 74;
Earman et al ed-77;
Blodwell QJRAS(85);
Friedman 86;
Hinckfuss BJPS(88);
Mundy PhSc(89)dec;
Jammer 93 [overview];
Nerlich 94;
Majer & Schmidt ed-95;
Brown 05;
Bertolami gq/06-ch;
Schuller a1111-ln [possible geometries, aside from Lorentzian geometry];
Ashtekar & Petkov ed-14 [handbook];
Lehmkuhl et al ed-17 [theory of spacetime theories];
Wuppuluri & Ghirardi ed-17 [interdisciplinary].
@ Historical: Capek ed-76; Clark 92;
Bertolami a0804-in [Minkowski's contribution];
Martínez 09 [space, time, and motion];
Edelheit SHPSA(09) [Patrizi's 1500s theory of space];
Bacelar a1203 [before and after 1905].
@ Books, I: Ridley 95;
Morris 99;
Pickover 99;
Majid ed-08.
@ General / mathematical: Torretti 83;
Matolcsi 84;
Gray 89;
Ray 91;
Pollini & Tarozzi ed-92;
Yau IJMPA(02) [strings];
Scholz a1206-in [geometries and gravity theories].
@ Conceptual: Boi Syn(04) [overview];
Stefanov & Giovanelli ed-17;
De Haro & de Regt Syn-a1807 [theories without spacetime].
@ Spacetime functionalism: Esfeld Syn-a1903;
Lam & Wüthrich Syn-a2003
[and realist perspective on quantum gravity];
Butterfield & Gomes a2008;
Gomes & Butterfield a2010 [and geometrodynamics].
@ Philosophical: Reichenbach 57;
Grünbaum 73;
Stein in(77);
Sklar 85;
Nerlich 94;
Schommers 94;
Hellman BJPS(98) [constructive math];
Slowik PhSc(99)mar [Descartes and relational motion];
Zimmermann gq/00,
gq/00-conf [pregeometry, spin networks];
Bitsakis FP(05) [re a priorism];
DiSalle 06;
Friedman SHPMP(07);
Hilbert & Huggett PhSc(06)dec [how space is internalized];
Petkov FP(07) [reality of spacetime];
Petkov 09,
10;
Caruso & Moreira Xavier a0907,
CHFC-a1505 [history of space dimensionality];
Knox BJPS(10) [geometricity of general relativity];
Romero a1105-ln;
Arntzenius 12;
Maudlin 12 [I];
Huggett & Wüthrich SHPMP(13)-a1206 [the possibility of science without spacetime];
Reichenberger a1605 [review of A Garbe book];
Gün a1612 [space and time in Kant and quantum gravity];
Pitts SHPMP(17)-a1710 [constructivism vs modal provincialism];
Hacyan a1803 [Schopenhauer];
Pitts Erk(18)-a1803 [and particle physics];
> s.a. many-worlds quantum theory; Ontology.
@ Space / spacetime points: Arntzenius PhSc(03)dec;
Butterfield BJPS(06) [against "pointillisme" in mechanics];
Tong SA(12)dec [the world is analog];
Arminjon a1807 [space vs spacetime];
Lizzi a1905-proc [in non-commutative geometry].
@ Relationism: Capek 61;
Barbour BJPS(82);
Mundy PhSc(83)jun;
Butterfield BJPS(84);
Catton & Solomon PhSc(88)jun;
Weinstein BJPS(01) [and quantum mechanics];
Anderson SHPMP(07)gq/05-in [geometrodynamics];
Skow BJPS(07)
[re Sklar's 1974 relationalist interpretation of Newtonian mechanics];
Vucetich IJMPD(11)-a1109 [materialistic relational theory];
Amelino-Camelia a1205
[spacetime as a redundant abstraction, and the relativity of locality];
Vassallo et al EJPS(16)-a1609 [and minimalist matter ontology];
Gomes & Gryb a2011 [support addressing rotational effects].
@ Substantialism: Harris 92;
Rynasiewicz PhSc(92)dec
[criticism, including Earman's Leibniz or Einstein algebras]; & Earman, & Rynasiewicz,
Levrini S&E(02) [educational implications];
Pooley PhD(02);
Bain PhSc(03)dec [Einstein algebras and hole argument against];
Baker PhSc(05)dec [and the cosmological constant];
Romero FS-a1109 [non-dynamical view of spacetime];
> s.a. diffeomorphisms; quantum
spacetime proposals [spacetime as composite].
@ Substantialism vs Relationism: Earman 89;
Maudlin PhSc(93)jun;
Lorente in(94)gq/03 [relational theories];
Hoefer BJPS(98);
in Baez gq/99 [and quantum gravity];
Dorato FP(00) ["structural spacetime realism"];
Auyang SHPMP(01);
Dieks SHPMP(01);
Vongehr a0912;
Romero FS-a1205;
Curiel BJPS-a1503.
@ Spacetime structuralism:
Slowik pr(08);
Wüthrich pr(08);
Greaves PhPersp(11);
Muller PhSc(11) [refutation of Wüthrich's argument];
Romero FS-a1509.
@ Conventionalism:
Gimbel SHPMP(04) [on Reichenbach];
Sklar PhSc(04)dec;
Mormann PhSc(05)dec [indefensibility];
Slowik PhSc(05)dec [and the substantival-relationist debate];
Weatherall & Manchak PhSc-a1302 [in classical vs relativistic spacetimes];
> s.a. lorentz invariance.
@ Spacetime as an elastic medium:
Tartaglia & Radicella CQG(10)-a0903,
a0911-proc,
IJMPA(15)-a1510-conf [and cosmology];
Battye & Pearson PRD(13)-a1301 [in massive gravity];
> s.a. Elasticity [stiffness].
@ Related topics: Meschini & Lehto FP(06)gq/05 [physical status of empty spacetime];
Verozub gq/96-talk [spacetime geometry not absolute];
Rovelli in(07) [spacetime without space or time];
Mondragon & López a0711-wd;
Manchak GRG(09) [is spacetime hole-free?];
Brown a0911 [metric as spacetime property or emergent field];
Saller 10 [spacetime from particle interactions];
Shurtleff a1103 [fundamental transformations];
Mondragon & López a1205;
García Sucre a1404 [rev];
Vaccaro a1605-in [space, time and dynamics];
De Haro a1707 [and dualities];
Martens & Lehmkuhl a2009,
a2009 [spacetime-matter distinction].
> Online resources: see Internet Encyclopedia of Science
pages.
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 25 nov 2020