|  Entropy in Quantum Theory | 
In General
  > s.a. entanglement entropy; H Theorem;
  quantum information; quantum chaos.
  * Von Neumann entropy: A
    quantum version of the Shannon entropy; For a quantum state represented
    by a density matrix ρ,
H = − k tr (ρ ln ρ) .
  * Interpretation: The von Neumann
    entropy and the subentropy of a mixed quantum state are upper and lower bounds,
    respectively, on the accessible information of any ensemble consistent with
    the given mixed state.
  * Remark: The von Neumann entropy
    is a convenient quantification of information, but entropy and information are not
    synonymous, one can change while the other is conserved [@ Shenker; rebuttal Henderson
    BJPS(03)].
  * Remark: Unlike in classical (Shannon)
    information theory, quantum (von Neumann) conditional entropies can be negative when
    considering quantum entangled systems; This is related to quantum non-separability
    and negative (virtual) information of  entangled particles [??? see below, and
    @ in Casini CQG(04)ht/03].
  * Wehrl entropy: It gives
    a basis-independent measure of the localization of quantum states in phase
    space; It can be generalized to Rényi-Wehrl entropies for pure
    states of spin systems, which according to Lieb's conjecture (unproven)
    are minimized by the spin coherent states.
  > Online resources:
    see Wikipedia page.
For Specific Types of Systems
  > s.a. cmb; coherent states;
  relativistic cosmology; thermodynamics.
  $ Relativistic entropy:
    A positive function on causally closed sets in Minkowski space, invariant
    under Poincaré transformations, and satisfying for commuting pairs
    of subsets A, B ∈ M
S(A) + S(B) ≥ S(A \(\lor\) B) + S(A ∧ B) , S(A) + S(B) ≥ S(A \(\lor\) B ⊥) + S(B ∧ A⊥) .
  @ General references:
    Cacciatori et al PRD(09)-a0803 [with different localization scheme].
  @ Cosmology: Castagnino et al GRG(96)gq/00 [particle production];
    Brustein PRL(00);
    Randall et al JHEP(02)ht [and area].
  @ Quantum gravity: Major & Setter CQG(01)gq [and area].
  @ Other quantum field theories:
    Sorkin et al GRG(81) [radiation];
    Narnhofer CQG(11) [in curved spacetime];
    Yoshida PRA(20)-a1909 [Boltzmann entropy];
    Longo & Xu a1911 [von Neumann entropy].
  @ Other systems: Kandrup IJTP(88),
    IJTP(89) [N interacting particles];
    Page PRL(93)gq,
    Sen PRL(96)ht [subsystem];
    Elze qp/97-proc [open systems];
    Wu & Cai gq/99/PRD [gas in curved spacetime];
    Caticha FP(00)qp/98 [array entropy];
    Ruelle CMP(01)mp [non-equilibrium spin system];
    Peres et al PRL(02) [spin-1/2 particle];
    Civitarese & Gadella Ent(18)-a1803 [unstable systems].
  > Gravity-related: see gravitational
    thermodynamics; particle effects [particle creation];
    quantum black holes; regge calculus.
Properties and Related Topics
  > s.a. causality [information causality]; Coarse
  Graining; Gibbs Paradox; Subentropy.
  * Properties: Strong
    subadditivity (proved in 1973 by Lieb & Ruskai); Quantum entropy
    is not increasing with the size of the subsystem, but it is concave, i.e.,
    for all λi
    such that λ1 +
    λ2 = 1 it satisfies
    S(λ1
    ρ1
    + λ2
    ρ2)
    > λ1
    S(ρ1)
    + λ2
  S(ρ2).
  * Ambiguities: For a given state
    on an algebra of observables there may be many associated density matrices, with
    different values of the entropy; This ambiguity  can often be traced to a gauge symmetry
    emergent from the non-trivial topological character of the configuration space of the
    underlying system, and can also happen in finite-dimensional matrix models.
  @ And measurement:
    Grigolini et al PLA(01) [entropy production];
    Alicki & Fannes RPMP(05) [rev];
    Shirokov JMP(11)-a1011 [entropy reduction].
  @ Strong subadditivity:
    Robinson & Ruelle CMP(67);
    Lanford & Robinson JMP(68);
    Petz RPMP(86),
    Nielsen & Petz qp/04/QIC [proof];
    Lieb & Seiringer PRA(05)mp/04 [stronger];
    Ruskai RPMP(07) [new short proof];
    Hansen MPAG(16)-a1511 [elementary proof].
  @ Entropy production: Aschbacher & Spohn LMP(06)mp/05 [positivity];
    Deffner EPL(13)-a1307 [non-equilibrium];
    Kaneko et al PRE(17)-a1706 [saturation, in many-body systems].
  @ Related topics: Sen PRL(96)ht [subsystems, average entropy];
    Zecca IJTP(04) [state superposition and decomposition];
    Liao & Fang PhyA(04) [entropy squeezing];
    Campisi PRE(08)-a0803,
    comment Sadri a0803 [and entropy increase];
    Casini JSM(10)-a1004 [infinite sequence of inequalities];
    Jakšić et al a1106 [entropic fluctuations];
    Berta et al JMP(16)-a1107 [smooth entropy formalism];
    Balachandran et al a1212,
    PRD(13)-a1302 [ambiguities];
    Hansen JSP(14)-a1305 [convexity of the residual entropy];
    Kim & Ruskai JMP(14)-a1404 [upper and lower bounds on the concavity].
References
  > s.a. types of entropies [including relative and Rényi entropy];
  non-extensive statistics; particle statistics
  [identical particles].
  @ General:
    Lieb BAMS(75);
    Wehrl RMP(78);
    Schiffer GRG(93) [and quantum gravity];
    Mirback & Korsch PRL(95) [phase space entropy and chaotic systems];
    Caticha qp/98-conf,
    FP(00)qp/98;
    Gyftopoulos qp/05;
    Rastegin JSP(11)-a1012 [general properties of entropies];
    Frank & Lieb a1109 [and the uncertainty principle];
    Resconi et al a1110
      [geometrical framework, morphogenetic calculus];
    Hansen a1604 [from first principles];
    Ansari a1605-FdP [entropy flow, and black holes];
    Majewski & Labuschagne a1804 [general approach];
    Facchi et al a2104 [for states of an algebra of observables].
  @ Von Neumann entropy: in von Neumann; Fujikawa JPSJ(02)cm/00 [vs Shannon];
    Petz in(01)mp;
    Hemmo & Shenker PhSc(06)apr [and thermodyamics];
    Farkas & Zimboras JMP(07)-a0706 [scaling, d-dimensional fermionic systems];
    Ostapchuk et al a0707 [geometric interpretation];
    Hörhammer & Büttner JSP(08)-a0710 [and thermodynamics, quantum Brownian motion];
    Shirokov CMP(10)-a0904 [continuity];
    del Río et al Nat(11)jun-a1009 [negative entropy, thermodynamic meaning];
    Maziero RBEP(15)-a1502 [physical meaning];
    Boes et al a1807 [operational characterization];
    Minello et al a1809 [of a graph];
    Sheridan a2007 [hist];
    Parzygnat a2009 [functorial characterization].
  @ Information entropy: Isham & Linden PRA(97)qp/96 [and consistent histories];
    Orlowski PRA(97) [and squeezing of fluctuations];
    Brody & Hughston JMP(00);
    Stotland et al EPL(04)qp;
    Kak IJTP(07)qp/06;
    Hwang a0806 [vs physical, objective entropy].
  @ Spacetime form: Sorkin JPCS(14)-a1205 [in terms of correlation functions];
    Chen et al a2002 [for interacting theories];
    Surya et al a2008 [causal set de Sitter horizons].
  @ Entropy vs information: Shenker BJPS(99);
    Shafiee & Karimi qp/06;
    Hörhammer & Büttner JSP(08) [for brownian motion].
  @ Shannon & von Neumann: Brukner & Zeilinger PRA(01)qp/00;
    Hall qp/00;
    Linden & Winter CMP(05)qp/04 [new inequality].
  @ Wehrl entropy: Gnutzmann & Życzkowski JPA(01) [Rényi-Wehrl entropy];
    Abdel-Khalek PS(09) [trapped ion interacting with laser field].
  @ Wehrl's entropy conjecture:
    Luo JPA(00) [proof];
    Lieb & Solovej CMP(16)-a1506 [extension to SU(N) and proof].
  @ In the phase-space representation: Manfredi & Feix PRE(00)qp/02 [based on Wigner functions];
    Włodarz IJTP(03).
  @ Dynamical entropy: Fannes & Haegeman RPMP(03)mp/02 [stochastic systems];
    Miyadera & Ohya RPMP(05)qp/03 [spin systems].
  @ Relative entropy: Zapatrin qp/04 [a priori/posteriori relative entropy];
    Lewin & Sabin LMP(14) [monotonicity];
    Berta et al LMP(17)-a1512 [variational expression];
    Xu CMP(19)-a1810 [for free fermion quantum field theory].
  @ Other entropies: De Nicola et al EPJB(06)qp [tomographic];
    Hansen JSP(07),
    Seiringer LMP(07)-a0704 [Wigner-Yanase entropy, not subadditive];
    Demarie & Terno CQG(13)-a1209 [in polymer quantization];
    Dupuis et al in(13)-a1211,
    Bosyk et al QIP(16)-a1506,
    Bizet & Obregón a1507 [generalized].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 14 may 2021