|  SU(2) Group | 
In General > s.a. lie group;
  mathematical physics; 10j Symbol.
  * Idea: The 3-dimensional group of
    2 × 2 unitary matrices of unit determinant (this is the defining representation).
  * Alternatively: It can be represented
    by the unit quaternions |p| = 1, acting on q ∈ \(\mathbb H\)
    by q \(\mapsto\) pq;
    Hamilton represented it by "turns'', equivalence classes of directed
    great circle arcs on the unit sphere S2.
  * Casimir invariant:
    S2
    = Sx2
    + Sy2
    + Sz2,
    with eigenvalues \(\hbar\)2j(j+1).
  * Finite subgroups: The cyclic groups
    Zn, the binary dihedral groups
    D4n*, the binary tetrahedral group T*,
    the binary octahedral group O*, and the binary icosahedral group I*.
  @ References: Mukunda et al Pra(10)-a0904 [Hamilton's theory of turns].
Generators
  * And group parametrization:
    There are three generators Si,
    in terms of which the group can be parametrized in one of the following ways:
    where S±:=
    2−1/2 (\(S_1 \pm
    \ii S_2\)), and N is a normalization factor.
  * Commutation relations:
    The Si are chosen
    to satisfy [Si,
    Sj] =
    i εijk
    Sk
    (or [Ji, Jj]
    = i\(\hbar\) εijk
    Jk). 
  * Pauli matrices:
    The basis σi
    = (i/2) τi,
    with i = 1, 2, 3, for the Lie algebra of SU(2) in the fundamental
    representation, or for the set of quaternions, where
They satisfy the identity σi σj = δij + i εijkσk, and their commutation relations are
[σi, σj] = εijk σk .
@ References: Pittenger & Rubin PRA(00)qp [higher-dimensional generalization]; Curtright et al Sigma(14)-a1402 [group elements as finite polynomials of Lie algebra generators].Representations and Other Related Topics > see regge calculus.
  @ References:
    Zalka qp/04 [high-dimensional, on quantum computer];
    Kibler qp/05-conf [non-standard scheme];
    Shurtleff a1001 [and spacetime rotations, boosts and translations];
    Akhtarshenas a1003 [invariant vector fields and one-forms].
  > Related topics: see Elliptic Space;
    group representations and lie-group representations;
    types of spinors [decompositions of products].
  > And physics: see 2-spinors [compositions];
    classical particles [on group manifold]; connection
    formulation of general relativity; coherent states.
6j-Symbol > s.a. angular momentum;
    clebsch-gordan coefficients; Racah Coefficients / Formula.
  * Idea: A real number which can be associated
    to a labelling of the six edges of a tetrahedron by irreducible representations of SU(2).
  * Racah formula: The formula for 6j symbols
  \[
    \Delta(a,b,c) = \sqrt{{(a+b-c)!\,(a-b+c)!\,(-a+b+c)!\over(a+b+c+1)}^{\vphantom2}},\qquad
    w\left\{\matrix{j_{_1} & j_{_2} & j_{_{12}}\cr j_{_3} & j & j_{_{23}}}\right\} =\ ...
  \]
@ Asymptotics: Watson JPA(99);
    Freidel & Louapre CQG(03)ht/02;
    Gurău AHP(08)-a0808 [Ponzano-Regge asymptotic formula];
    Littlejohn & Yu JPCA(09)-a0905 [uniform asymptotic approximation];
    Dupuis & Livine CQG(10)-a0910;
    Kamiński & Steinhaus JMP(13)-a1307 [using a coherent state approach];
    Bartlett & Ranaivomanana a2012 [and Wigner derivative for spherical tetrahedra].
  @ Related topics: Carter et al 95;
    Roberts G&T(99)mp/98 [Ponzano-Regge and geometry];
    Alisauskas JPA(02)mp [SO(n)];
    Coquereaux JGP(07)ht/05 [and Ocneanu cells];
    Freidel et al JMP(07) [duality relations];
    Kwee & Lebed JPA(08) [identity];
    Aquilanti et al JPA(12)-a1009 [semiclassical mechanics];
    Bonzom & Livine AHP(11)-a1103 [recursion relations].
Other Similar Symbols > s.a. 3j Symbols.
  @ 9j: Jang JMP(68) [identities];
    Rosengren JMP(99) [triple sum formula];
    Alisauskas JMP(00)m.QA/99 [SU(2) and uq(2) sum formulas];
    Haggard & Littlejohn CQG(10)-a0912 [asymptotic formula];
    Littlejohn & Yu PRA(11)-a1104 [limit of one small and eight large angular momenta].
  @ 12j: Alisauskas JMP(02)
      [SU(2) and uq(2) sum formulas];
    Yu PRA(11)-a1104,
    a1108 [some asymptotic limits];
    > s.a. spin-foam models.
  @ 15j:
    Barrett et al IJMPA(10) [asymptotics].
  @ 3nj: Wei & Dalgarno JPA(04)mp/03 [factorization + calculation];
    Lorente mp/04-conf [and Ponzano-Regge model];
    Bonzom & Fleury JPA(12)-a1108 [asymptotics];
    Delfino a1110 [identities];
    Speziale JMP(17)-a1609 [and boosts].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 dec 2020