|  Quantum Regge Calculus | 
In General
  > s.a. quantum gravity; quantum spacetime
  / lattice field theory; lattice
  gravity; models of topology change.
  * Idea: A non-perturbative
    approach to discrete quantum gravity, based on simplices and metric variables;
    Exhibits a short-range non-locality.
  * Status: 2001, After a lot
    of work on the question of phase transitions, it is generally believed
    that the standard version with continuous edge lengths is not viable
    because it only has a first-order phase transition, and comes to be
    dominated by a crumpled phase; This motivates the dynamical triangulations
    approach, or the use of a different set of variables.
  @ General references:
    Roček & Williams PLB(81),
    in(82);
    Hamber in(84),
    in(86);
    Hartle in(85),
    in(86);
    Schleich in(94);
    Immirzi CQG(96)gq/95;
    Hamber & Williams PRD(11)-a1109 [discrete Wheeler-DeWitt equation];
    Tate & Visser JHEP(11)-a1108 [Lorentzian-signature model].
  @ Intros, reviews: in Isham in(86);
    de Bakker PhD(95)hl;
    Williams NPPS(97)gq;
    Ambjørn et al ht/00;
    Ambjørn gq/02-GR16;
    Khatsymovsky JETP(05)gq;
    Loll et al CP(06)ht/05 [causal dynamical triangulations].
  @ Sum over histories: Lehto et al CMP(84),
    NPB(86),
    NPB(87) [euclidean];
    Jevicki & Ninomiya PRD(86);
    Römer & Zähringer CQG(86) [gauge fixing];
    Schleich & Witt NPB(93)gq,
    NPB(93)gq [sum over topologies];
    Khatsymovsky PLB(03)gq/02 [\(\langle\)area\(\rangle\)],
    gq/03,
    PLB(04)gq [\(\langle\)length\(\rangle\)];
    Khatsymovsky MPLA(10)-a1005 [integration over connections];
    Dittrich et al CQG(14)-a1404 [discretization independence and non-locality];
    Marzuoli & Merzi IJGMP(16)-a1601;
    Miković & Vojinović a1804-proc;
    Miković a2001 [piecewise flat metrics].
  @ Sum over histories, area Regge calculus: Khatsymovsky PLB(04)gq,
    PLB(04)gq,
    PLB(06)gq/05 [Lorentzian],
    PLB(06)gq/06 [euclidean],
    a0707 [positivity of the measure].
  @ Measure: Hartle JMP(85);
    Bander PRL(86);
    Khatsymovsky CQG(94)gq/93;
    Menotti & Peirano NPPS(97)gq;
    Hamber & Williams PRD(99)ht/97 [standard vs non-local];
    Khatsymovsky PLB(01) [Faddeev-Popov factor],
    PLB(02)gq/01,
    PLB(04)gq;
    Gambini & Pullin IJMPD(06) [from consistent discretization].
  @ Diffeomorphism invariance: Hartle JMP(85);
    Lehto et al NPB(86);
    Pfeiffer PLB(04)gq/03 [and local degrees of freedom].
  @ Propagators:
    Roček & Williams PLB(81),
    ZPC(84);
    Feinberg et al NPB(84);
    Williams CQG(86).
Types of Models and Relationships  > s.a. cosmological-constant
  problem; dynamical triangulations; einstein-cartan theory.
  * And spin-foam approach:
    The large-spin asymptotics of the Barrett-Crane vertex amplitude is known
    to be related to the Regge action.
  @ In quantum cosmology: Birmingham PRD(95)gq [lens space];
    Correia da Silva & Williams CQG(99)gq [with scalar],
    CQG(99)gq [anisotropic].
  @ Minisuperspace: Hartle JMP(85),
    JMP(86),
    JMP(89);
    Louko & Tuckey CQG(92);
    Furihata PRD(96) [no-boundary, anisotropic + cosmological constant];
    Birmingham GRG(98)gq/97 [cone on a space];
    Correia da Silva  & Williams CQG(00)gq [+ massive scalar], 
    gq/00/CQG [wormholes].
  @ And matter: Drummond NPB(86);
    Ren NPB(88);
    Hamber & Williams NPB(94) [scalar, effect on phase transition];
    Ambjørn et al JHEP(99)hl [abelian gauge theory];
    Gionti gq/06-proc;
    Paunković & Vojinović JPCS-a1601 [gravity-matter entanglement].
  @ 2D: Menotti & Peirano NPB(96)ht,
    Nieto PLB(05)hl,
    Zubkov PLB(05) [measure];
    Yukawa PRD(12) [as Markov process, master equation].
  @ 3D: Ambjørn et al PRL(00)ht,
    PRD(01)ht/00 [Lorentzian path integral];
    > s.a. 3D geometries; 3D quantum gravity.
  @ 4D: Höhn PRD(15)-a1411 [canonical, linearized Regge calculus and lattice gravitons].
  @ Higher-dimensional: Hamber & Williams PRD(06)ht/05 [large-D limit].
  @ Semiclassical: Barrett & Faxon CQG(94)gq/93;
    Demkin MPLA(00) [simplicial complexes];
    Ambjørn et al PLB(05)ht/04,
    PRD(05)ht [from causal dynamical triangulations];
    Bianchi & Satz NPB(08)-a0808 [and spin foams].
  @ Phase transitions: Ambjørn et al PLB(92),
    Ambjørn & Varsted NPB(92) [3D, euclidean];
    Hamber & Williams PRD(93),
    Hamber NPB(93) [critical exponents];
    Ambjørn & Jurkiewicz NPB(95)ht;
    > s.a. regge calculus.
  @ And spin-foam approach: 
    Bianchi & Modesto NPB(08)-a0709;
    Gionti IJGMP(12)-a1110-proc;
    > s.a. spin-foam quantum gravity.
  @ Numerical: Berg PRL(85);
    Hartle pr(86);
    Hamber gq/98 [custom-built supercomputer].
  @ Related topics: Brügmann & Marinari PLB(95)ht/94 [exponential bound];
    Hamber & Liu NPB(96)ht [perturbative, Feynman rules];
    Ambjørn et al CQG(97)gq [spikes];
    Bilke & Thorleifsson NPPS(99)hl/98,
    PRD(99)hl/98 [degenerate triangulation];
    Khatsymovsky PLB(07)gq/06 [possible finiteness of theory];
    Dittrich et al PRD(07) [4-simplex action and linearized quantum gravity].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 1 feb 2020