|  Boundary Conditions in Quantum Cosmology | 
In General
  > s.a. quantum cosmology [Lorentzian].
  * Requirements: Existence of a
    classical world (the density matrix must 'decohere' to get classical probabilities);
    Homogeneity, isotropy, right spectrum of fluctuations, enough inflation.
  * Some possibilities: In addition to the
    ones below, proposals include Penrose's Weyl Tensor Proposal; Brout, Englert (cooperative
    process) Fischler, Susskind; Narlikar-Padmanabhan; Tipler's Explosion from Nothing.
  @ General references: Hartle in(86);
    Zhuk CQG(88);
    Moss & Poletti NPB(90);
    Vilenkin AIP(99)gq/98;
    Avramidi & Esposito gq/99-conf;
    Tipler ap/01 [unique initial state];
    Coule CQG(05)gq/04 [rev];
    Page ht/06-MGXI;
    Maydanyuk EPJC(08)-a0707;
    Jalalzadeh & Moniz PRD(14)-a1403 [boundary proposals and the algebra of Dirac observables];
    Magueijo PRD(20)-a2005 [equivalence between some boundary conditions in minisuperspace].
  @ In lqg: Bojowald GRG(03)gq;
    Bojowald & Vandersloot PRD(03)gq,
    gq/03-MGX;
    Coule gq/03 [comparison];
    > s.a. signature change.
  @ Phenomenology: Suenobu & Nambu GRG(17)-a1603
      [numerical solution of the WDW equation, and inflationary number of e-foldings].
  @ For perturbations:
    Giovannini CQG(03).
Universe-from-Nothing Proposals
  > s.a. hartle-hawking no-boundary proposal.
  * Vilenkin's tunneling
    wavefunction: Solve the Wheeler-DeWitt equation imposing that the wave
    function have only outgoing waves on the singular boundary of superspace.
  @ General references:
    Vilenkin PLB(82),
    PRD(83);
    Zel'dovich & Starobinskii (84); Grishchuk (84);
    Vilenkin PRD(84),
    PRD(86),
    PRD(94)gq;
    Garriga & Vilenkin PRD(97)gq/96 [black hole pair production];
    Berman & Trevisan IJMPD(10)gq/01;
    Blanco-Pillado et al JCAP(12);
    He et al PRD(14)-a1404 [argument from explicit solution of the Wheeler-DeWitt equation];
    Kohli a1405 [comments on Krauss' book];
    Battarra & Lehners PLB(15)-a1406 [in ekpyrotic cosmological theories].
  @ From tunneling: Kandrup & Mazur IJMPA(91) [semiclassical, rev];
    Dąbrowski & Larsen PRD(95)gq [FLRW];
    Labraña PRD(12)-a1111;
    Feldbrugge et al PRL(17)-a1705 [semi-classical description untenable];
    Vilenkin & Yamada PRD(18)-a1808 [three approaches];
    Vilenkin & Yamada PRD(19)-a1812 [the backreaction problem];
    Matsui a2102 [Lorentzian path integral and WKB approximation];
    > s.a. CMB anisotropies.
  @ And the cosmological constant:  Coule MPLA(95)gq/94;
    Barvinsky & Kamenshchik PRD(06)ht;
    Ambjørn & Watabiki MPLA(17)-a1709 [based on a W\(_3\) symmetry].
  @ And inflation: Vilenkin PRD(98)gq,
    gq/02-proc [vs Hartle-Hawking proposal];
    Coule & Martin PRD(00) [open universe].
  > Related topics: see inflation and
    planck-scale physics; gravitational instantons; Nothing.
Other Proposals
  > s.a. Penrose's Weyl Curvature Hypothesis.
  * Linde's continuous regeneration:
    The Hartle-Hawking and tunneling wave functions are seen as approximations valid
    in some regimes; a modified inflation with continuous generation of bubbles
    (with different dimensionality, physical constants, ...) is the thing.
  @ Mixed state from Euclidean quantum gravity:
    Barvinsky & Kamenshchik JPA(07) [quasi-thermal state].
  @ Related topics: Conradi PRD(92);
    Bouhmadi-Lopez & Vargas Moniz gq/07-MGXI [thermal boundary conditions].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 23 feb 2021