|  3-Dimensional Quantum Gravity – Connection Representation | 
In General > s.a. Goldman Bracket;
  regge calculus; theta sectors.
  * Geometry:
    Quantizing 't Hooft's polygon approach one finds that the Hamiltonian
    is cyclic, so time appears to be quantized; This however has been seen
    as an artifact of the fact that one quantizes a gauge-fixed theory;
    In Lorentzian quantum gravity, the spectrum of spacelike intervals is
    continuous, that of timelike intervals discrete.
  @ General references: Anderson PRD(93)gq/92 [metric and holonomy formulations];
    Matschull CQG(95)gq [review];
    Waelbroeck & Zapata CQG(96)gq [comparison];
    Thiemann CQG(98)gq/97 [Euclidean];
    in Ashtekar in(99) [manifold reconstruction];
    Noui & Pérez CQG(05)gq/04 [inner product];
    Noui CQG(07);
    Meusburger & Noui ATMP(10)-a0809 [comparison with combinatorial quantization];
    Freidel et al PRD(19)-a1811 [particle-like edge modes];
    Shoshany PRD(19)-a1904 [dual polarization].
  @ Loop quantum gravity: Loll JMP(95)gq [spatially closed];
    Ezawa NPB(96)gq/95 [solutions of Hamiltonian constraint];
    García-Islas CQG(04)gq/03 [spin networks];
    Pérez & Pranzetti CQG(10)-a1001 [with positive cosmological constant, regularization];
    Bonzom & Freidel CQG(11)-a1101 [Hamiltonian constraint];
    Pranzetti CQG(11)-a1101 [with Λ > 0, physical state];
    Noui et al JHEP(11)-a1105,
    Noui et al JPCS(12)-a1112 [with Λ > 0];
    Ben Achour et al PRD(15)-a1306 [role of the Barbero-Immirzi parameter];
    Pranzetti PRD(14)-a1402 [and spin-foam quantization];
    Girelli & Sellaroli PRD(15)-a1506 [Lorentzian, spinor approach];
    Dittrich & Geiller NJP(17)-a1604 [representation from extended topological quantum field theories];
    Charles PRD(18)-a1709 [simplicity constraints];
    Dittrich a1802 [cosmological constant from defect condensation];
    Charles GRG(19)-a1808
      [simplified, U(1)3 model with scalar field];
    > s.a. 3D black holes.
  @ With symmetries, lqc: Zhang PRD(14)-a1411 [lqc];
    Cianfrani et al a1606 [symmetries];
    Bilski & Marcianò a1707 [with a scalar field clock].
  @ Geometrical operators:
    Livine & Rovelli gq/01-wd [length and time]
    → Freidel et al CQG(03)gq/02 [length and area];
    Ben Achour et al PRD(14)-a1306 [comparison between two formulations];
    Ariwahjoedi et al IJGMP(15)-a1503 [curvatures and discrete Gauss-Codazzi equation];
    > s.a. discrete spacetime models;
    geometry of canonical quantum gravity.
Spin-Foam Models
  @ Spin foam: Zapata JMP(02)gq [continuum];
    Oriti & Tlas PRD(06)gq [matter and causality];
    Fairbairn & Livine CQG(07)gq [and matter, effective field theory];
    Speziale CQG(07)-a0706 [coupled to Yang-Mills];
    Martins & Miković CMP(09)-a0804 [perturbation theory];
    Caravelli & Modesto a0905 [spectral dimension];
    Xu & Ma PRD(09)-a0908 [emergence of massless Klein-Gordon field];
    Goeller et al GRG(20) [boundary states and exact partition function].
  @ Spin foams, graviton propagator: Speziale JHEP(06)gq/05;
    Livine et al PRD(07)gq/06;
    Bonzom et al NPB(08)-a0802.
  @ Related topics: Peldán CQG(96)gq/95 [modular-invariant theory];
    Marolf et al JMP(97)gq [Euclidean, Diff superselection];
    Nelson & Picken PLB(00)gq/99,
    gq/04-MGX [quantum holonomies];
    Delcamp et al a1803 [dual loop quantization];
    Dittrich et al CQG(18) [quasi-local holographic dualities].
Other Approaches and Variations
  @ With point particles:
    't Hooft CQG(93)gq;
    Noui & Pérez CQG(05);
    Noui JMP(06)gq;
    Freidel et al PRD(19)-a1811.
  @ Other matter:
    Constantinidis et a CQG(15)-a1403 [AdS gravity and topological matter].
  @ As a Chern-Simons theory: Barbosa et al JPCS(12)-a1206 [complete loop quantization];
    Kim & Porrati JHEP-a1508 [on AdS3].
  @ Loop representation: Nayak GRG(91);
    Marolf CQG(93)gq,
    gq/93;
    Carlip gq/93;
    Ashtekar & Loll CQG(94)gq [loop transform];
    Carlip & Nelson PLB(94)gq/93,
    PRD(99)gq/98.
  @ Ponzano-Regge state-sum model: Rovelli PRD(93)ht;
    Iwasaki JMP(95)gq;
    Livine AHP(16)-a1610 [coarse-graining and q-deformation].
  @ Topological gravity:
    Husain PRD(91) [general-relativity-like topological field theory];
    > s.a. 3D quantum gravity.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 28 mar 2021