|  Monte Carlo Method | 
In General
  > s.a. computational physics; integration.
  * Idea: A statistical method
    used to calculate quantities that are too difficult to compute analytically,
    in which one generates random events in a computer; Versions are the random
    walk (Metropolis) and the Hamiltonian ones.
  @ Texts and reviews:
    Jadach phy/99 [guide];
    Newman & Barkema 99,
    Krauth 06 [in statistical physics];
    Binder & Heermann 19;
    > s.a. specific areas.
  @ General references:
    Kosztin et al AJP(96)may [diffusion method for minima];
    Binder RPP(97) [in statistical physics];
    Doye & Wales PRL(98) [optimization and thermodynamics],
    CPC(00)phy/99 [self-adapting simplicial grid];
    Landau et al AJP(04)oct [Wang-Landau sampling in statistical mechanics];
    Kendall et al 05;
    Ambegaokar & Troyer AJP(10)feb [error estimation];
    During & Kurchan EPL(10)-a1004 [statistical mechanics of Monte Carlo sampling].
Types of Algorithms
  > s.a. markov process; Simulated Annealing.
  * Markov Chain Monte Carlo method: Different
    random configurations of a system are generated by small variations as in a Markov chain
    (for example, a random walk), and are then given a probability of being accepted; Two
    versions are the Metropolis algorithm and Hamiltonian Monte Carlo.
  * Metropolis algorithm: A version of the MCMC
    method which applies to a thermal system, for which the probability of acceptance depends
    on the temperature; The algorithm fails in systems on the verge of a phase transition.
  @ Markov Chain Monte Carlo method:
    Ottosen a1206 [rev];
    Alexandru et al PRL(16)-a1605 [real-time dynamics on the lattice using the Schwinger-Keldysh formalism];
    Betancourt a1706 [history];
    Hanada a1808 [intro];
    Joseph book(20)-a1912-ln [in quantum field theories].
  @ Metropolis algorithm: Bhanot RPP(88);
    Berg PRL(03) [for rugged dynamical variables];
    Moussa a1903-conf [quantum];
    > s.a. path integrals.
  @ Other algorithms: Suwa & Todo PRL(10)-a1007 [without detailed balance];
    Jansen et al JPCS(13)-a1211,
    CPC(14)-a1302 [quasi-Monte Carlo method, and lattice field theories];
    Herdeiro & Doyon PRE(16)-a1605 [method for critical systems in infinite volume];
    Cai et al a1811
      [inchworm Monte Carlo method, open quantum systems];
    Edwards et al AP(19)-a1903 [worldline Monte Carlo];
    > s.a. Glauber Dynamics.
  @ Quantum Monte Carlo: Suzuki ed-93 [condensed matter];
    Rombouts et al PRL(06) [new updating scheme];
    Anderson 07;
    Pollet et al JCP(07) [optimality];
    Temme et al Nat(11)mar-a0911 [sampling from Gibbs distribution];
    Destainville et al PRL(10);
    Fantoni & Moroni JChemP(14)-a1408 [for quantum Gibbs ensemble];
    Zen et al PRB(16)-a1605 [improved accuracy and speed];
    Gubernatis et al 16 [pedagogical overview];
    Becca & Sorella 17 [for correlated systems];
    Hangleiter et al SciAdv(20)-a2001 [easing the sign problem];
    Mareschal a2103,
    a2103 [history].
Applications > s.a. computational physics
  by areas [including statistical mechanics, field theory, gravity, quantum mechanics].
  @ For fermions: Corney & Drummond PRL(04)qp,
    PRB(06)cm/04;
    Assaraf et al JPA(07).
  @ Astrophysics and cosmology:  Hajian PRD(07)ap/06 [Hamiltonian version, and cosmology];
    > s.a. black-hole formation; observational cosmology.
  @ Other systems: Janke PhyA(98) [disordered systems];
    Talbot et al JPA(03) [exact results for simple harmonic oscillator];
    Lahbabi & Legoll JSP(13) [multiscale systems in time];
    Pavlovsky et al a1410-conf [path integral for relativistic quantum systems];
    Silva Fernandes & Fartaria AJP(15)sep [gas-liquid coexistence].
  > Other systems: see Chemical
    Potential; composite systems; diffusion;
    lattice field theory; Mean-Field Method;
    schrödinger equation.
  > Online resources: see
    Wikipedia page.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 27 may 2021