|  Integration Theory | 
In General
  > s.a. analysis; measure theory.
  * Riemann integral:
    > see MathWorld page,
    Wikipedia page.
  * Lebesgue integral:
    > see MathWorld page,
    Wikipedia page.
  * Riemann-Stieltjes integral:
    The Stieltjes integral of a bounded function f on [a, b]
    with respect to another bounded function α is the limit of the Riemann
    sum of f(ξi)
    [α(xi+1) −
    α(xi)] for a partition a
    < x1 < x2
    < ... < xn−1 < b of
    the interval, as the width of the subintervals goes to zero, if the limit is well-defined;
    > s.a. MathWorld page;
    Wikipedia page.
  * Lebesgue-Stieltjes integral: see
    Wikipedia page.
  @ Texts: Whitney 57;
    Bourbaki 63;
    Royden 63;
    Taylor 65;
    Bartle 66;
    Descombes 73;
    Halmos 74;
    Marle 74;
    McShane 83;
    Carathéodory 86 [algebraic theory];
    Swartz 94;
    Priestley 97;
    Väth 02 [III];
    Kurtz & Swartz 11.
  @ Tables: Magnus & Oberhettinger 43;
    Petit Bois 61;
    Abramowitz  & Stegun ed-65;
    Gradshteyn & Ryzhik 93;
    Gradshteyn et al 00.
  @ Handbook: Zwillinger 92.
Special Integrals  > s.a. trigonometry.
  * Integrals of exponential functions: \(\int_0^\infty
    {\rm d}x\,x^n\,{\rm e}^{-ax} = n! / a^{n+1}\); > s.a. Beta
    Function; Fresnel Integrals;
    Gamma Function; gaussian integrals.
  * Poisson's second integral:
    The expression for the Bessel functions, which can be derived from Sonine's integral,
Jn(z) = (i/2)n / [Γ(n+1/2) Γ(1/2)] ∫0π dθ cos(z cosθ) sin2nθ ;
  Special cases: For n = 0, one gets Parseval's integral.
  @ References: Tung & Jódar AML(06)mp/04 [dilogarithmic double integrals];
    Chmutov & Duzhin m.GT/05-en [Kontsevich integral];
    Shakirov TMP(10),
    Stoyanovsky a1005
      [integrals of exponentials of polynomials, and generalized hypergeometric functions];
    Mathai & Haubold a1109 [a versatile integral].
  > Integrals of exponential functions: see
    Beta Function; Fresnel Integrals;
    Gamma Function; gaussian integrals.
  > Other integrals: see bessel functions;
    Borwein Integrals; Hypergeometric Functions;
    Special Functions.
Special Techniques and Related Topics > s.a. gauss-bonnet theorem;
  Integral Transforms; vector  [Green's theorem].
  * Steepest-descent approximation:
    A method for calculating integrals over \(\mathbb R\), in which one approximates
    the measure dσ(t) = exp[−f(t)]
    dt by dσsd(t)
    = ∑i exp[−f(xi)
    − f''(xi) t2/2]
    dt, where xi
    are the minima of f; > It is related to the
    Stationary-Phase Approximation.
  * Numerical methods: Some of the common
    methods are the Newton-Cotes class of methods (including the trapezoid method and its
    Romberg method variant, and Simpson's 1/3 and 3/8 rules, for which the error scales
    as a power of the bin width), and the Monte Carlo approach; For 1D integrals, the
    Newton-Cotes methods tend to be more efficient, for higher-dimensional integrals,
    the Monte Carlo method is.
  * Finite-part integration: A method of
    evaluating convergent integrals by means of the finite part of divergent integrals.
  @ General references:
    González & Moll a0812,
    González et al a1004 [method of brackets];
    Harnad & Orlov TMP(09) [fermionic approach, rational symmetric functions];
    Kempf et al JPCS(15)-a1507 [integrating by differentiating];
    Temme 14 [asymptotic methods];
    Valean 19 [derivations and difficult cases];
    Villanueva & Galapon a2012 [finite-part integration].
  @ Steepest-descent approximation:
    Koshkarov TMP(95) [for path integrals];
    > s.a. Wikipedia page.
  > Applications:
    see minisuperspace quantum cosmology.
  > Numerical methods:
    see MathWorld page on Newton-Cotes methods;
    Wikipedia page on Newton-Cotes methods;
    montecarlo method.
  > Related topics:
    see Cauchy Principal Value; Finite Part Integral;
    Hilbert Transform; Reynolds Theorem.
Generalizations > s.a. integration on manifolds
  [including Stokes' theorem]; lie groups.
  * Fractional integrals: Developed by Riemann-Liouville.
  @ Infinite-dimensional spaces: Kolmogorov 36;
    DeWitt-Morette CMP(72),
    CMP(74);
    > s.a. space of connections.
  @ Fractional integrals: Bateman 54 v2, ch XIII;
    Nigmatullin TMP(92),
    comment Rutman TMP(94);
    Rutman TMP(95) [interpretation];
    Kobelev m.CA/00 [generalization];
    Podlubny FCAA(02)m.CA/01 [interpretation].
  @ Henstock / Kurzweil: Kurzweil 00;
    Swartz 01 [& McShane].
  @ Functional integrals: LaChapelle a1308,
    a1501 [proposed definition];
    Grangé & Werner a1812 [on paracompact manifolds];
    > s.a. path integrals.
  @ Related topics: Henstock 88 [generalized Riemann];
    Novak JoC(01)qp/00 [quantum algorithms];
    Suzuki a0806 [negative-dimensional integration];
    Gudder RPMP(10),
    RPMP(12)-a1105 [quantum integrals and examples].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 16 feb 2021