|  Types of Integrable Systems | 
In General > s.a. integrable quantum systems.
  * Types: s-integrable, studied
    by spectral methods; c-integrable, solved by changing variables; Superintegrable,
    with more than n functionally independent integrals of the motion.
  @ 2D: Baleanu & Karasu MPLA(99)gq/00 [Lax, with symmetries];
    McLenaghan & Smirnov JMP(00);
    Pucacco & Rosquist JMP(05).
  @ In arbitrary dimensions: Álvarez et al AIP(99)ht;
    Goliath et al JPA(99)si/98.
  @ Hamiltonian models: Magri JMP(78);
    Calogero & Françoise JMP(96);
    Mostafazadeh a1401
      [differential integrability condition for 2D Hamiltonian  systems].
  @ Superintegrable: Kalnins et al JPA(01)mp/01,
    JMP(02)mp/01;
    Daskaloyannis & Ypsilantis JMP(06)-mp/04 [2D, with integrals quadratic in momenta];
    Ballesteros & Herranz JPA(07) [on constant curvature];
    Yzaguirre MS-a1209 [geometric structure];
    Nucci & Post JPA(12) [and Lie symmetries];
    Nikitin JPA(12)-a1205 [new examples];
    Gonera & Kaszubska AP(14)-a1311 [on spaces of constant curvature];
    > s.a. classical systems; Fock Symmetry.
  @ Discrete: Grammaticos et al JPA(01) [integrability];
   Kimura et al JPA(02) [and discrete Painlevé];
    Quispel et al JPA(05) [duality];
    Grammaticos et al JPA(09) [integrability tests].
  @ Other types: Sen & Chowdhury JMP(93) [supersymmetric];
    Devchand & Ogievetsky ht/94-conf [4D];
    Ramani et al JPA(00) [without Painlevé property];
    Reshetikhin a1509 [degenerate integrability].
Bi-Hamiltonian and Related Systems
  > s.a. Bi-Hamiltonian System.
  * Bi-Hamiltonian system:
    A bi-Hamiltonian system is integrable if its Nijenhuis tensor vanishes.
  @ Bi-Hamiltonian systems:
    Smirnov LMP(97) [constructive];
    Sergyeyev AAM(04)nl/03 [construction];
    Nutku & Pavlov JMP(02) [multiple Lagrangians];
    Praught & Smirnov Sigma(05)n.SI [history, Lenard recursion formula];
    Bogoyavlenskij DG&A(07) [identity for Schouten tensor];
    Gürses et al JMP(09)-a0903 [all dynamical
      systems on \(\mathbb R\)n are (n−1)-Hamiltonian];
    Barnich & Troessaert JMP(09)-a0812 [electromagnetism, linearized gravity and Yang-Mills theory];
    Mokhov TMP(11) [non-local, of hydrodynamic type];
    Bolsinov & Izosimov CMP(14) [singularities];
    > s.a. duality in field theory; integrable quantum systems;
      types of symplectic structures.
  @ Quasi-bi-Hamiltonian systems:
    Morosi & Tondo JPA(97).
Specific Examples
  > s.a. types of field theories [integrable]; non-commutative
  systems; self-dual fields; toda lattice.
  * Examples: The Toda lattice
    and Korteweg-de Vries (KdV) equation; 3-body ones include the Kaluza-Klein
    two-center problem [@ Cornish & Gibbons CQG(97)gq/96].
  @ Calogero-Moser: Calogero in(91),
    JMP(93);
    Gonera JMP(98);
    Bordner et al PTP(98)ht,
    PTP(99)ht/98,
    Bordner & Sasaki PTP(99)ht/98;
    Bordner et al PTP(99) [generalized];
    Bordner et al PTP(00).
  @ Calogero & Sutherland models:
    Rühl & Turbiner MPLA(95);
    Efthimiou & Spector PRA(97)qp;
    Gurappa & Panigrahi ht/99,
    PRB(00)ht/99;
    Forger & Winterhalder ht/99;
    Jonke & Meljanac PLB(01) [symmetry algebra];
    Guhr & Kohler PRE(05)mp/04 [supersymmetric extension];
    Sasaki & Takasaki JMP(06) [explicit solutions, any root system];
    Polychronakos JPA(06)ht [rev];
    in Xu a1205 [algebraic approach].
  @ KdV: Nakamura JMP(81) [Bäcklund transformation];
    Dimakis & Müller-Hoissen PLA(00)ht [non-commutative];
    Kersten & Krasil'shchik n.SI/00 [KdV-mKdV];
    Khare & Sukhatme PRL(02)mp/01 [superposition of solutions];
    Gieseker JDG(03) [deformation];
    Carroll qp/03 [KP/KdV and quantum mechanics];
    Hayashi et al PRS(03) [initial-boundary-value problem];
    Bracken PhyA(04) [solutions];
    Willink a0710-conf [history of Korteweg-de Vries paper];
    Rasin & Schiff JPA(09) [discrete, infinitely-many conservation laws];
    Lidsey PRD(12)-a1205 [significance to cosmology];
    in Xu a1205-ch [algebraic approach];
    Zakharov TMP(13) [Cauchy problem, renormalization method];
    Karczewska & Rozmej a1901 [higher-order, solutions];
    > s.a. heat kernel; solitons.
  @ Other examples:
    Vosmischeva 03 [spaces of constant curvature];
    Gadella et al JPA(08)-a0711-conf [some 3D systems];
    > s.a. Dimer Models;
      special potentials [exactly solvable].
  > Particle motion in curved spacetimes: see kerr
    and generalized kerr spacetimes; spinning particles.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 jan 2019