|  Gravitational Radiation Reaction and Self-Force | 
In General > s.a. radiation reaction in general.
  * Results: A point
    particle perturbs the spacetime metric, and affects its own motion; In the
    zero-mass limit it moves along a geodesic, but to first order in m
    it accelerates, and there are two effects, a time-dependent inertial mass and
    a deviation from geodesic motion (like geodesic motion for a modified metric);
    The infinite self-field can be unambiguously decomposed into a singular piece
    that exerts no force, and a smooth remainder that is responsible for the
    acceleration.
  * Approaches:
    Barack/Burko/Ori's mode-sum regularization prescription (MSRP).
  * Motivation:
    2014, Calculating the gravitational self-force is the best approach
    available to model the gravitational waves emitted by binary systems
    with extreme-mass ratios.
  @ Reviews: Poisson LRR(04)gq/03 [from scratch];
    Detweiler CQG(05)gq;
    Wald a0907-proc [intro];
    Poisson et al LRR(11)-a1102;
    Pound a1506-ch;
    Barack & Pound RPP(19)-a1805 [for non-specialists].
  @ General references:
    DeWitt & Brehme AP(60);
    Kennefick gq/97 [history];
    Quinn & Wald PRD(97)gq/96 [axiomatic];
    Blanchet & Faye JMP(01)gq/00;
    Quinn PRD(00)gq [and scalar field];
    Detweiler PRL(01)gq/00;
    Poisson CQG(04), gq/04-GR17;
    Spallicci ch(10)-a1005-ln [and free fall, historical];
    Bini & Damour PRD(12)-a1210 [general orbits, effective one-body formalism].
  @ The singular field: Messaritaki PRD(07)gq;
    Harte a1002-MG12 [effect on a body's multipole moments];
    Heffernan a1403-PhD [local behavior].
  @ The gauge issue: Barack & Ori PRD(01)gq [gauge-independent];
    Gralla PRD(11)-a1104 [and averaging];
    Cañizares  & Sopuerta a1406 [new approach].
  @ Approaches: Barack & Ori PRD(00)gq/99,
    Burko AIP(00)gq/99 [MSRP];
    Detweiler & Whiting PRD(03)gq/02 [decomposition];
    Ori & Rosenthal PRD(03)gq/02,
    JMP(04)gq/03 [extended object approach];
    Anderson et al PRD(05)gq/04 [quasi-local terms];
    Anderson & Wiseman CQG(05)gq [matched expansion];
    Pound et al PRD(05)gq [limitations of adiabatic approximation];
    Gal'tsov et al in(06)gq/07 [local method];
    Gralla & Wald CQG(08)-a0806,
    a0907-proc [rigorous derivation];
    Harte CQG(08)-a0807 [from generalized Killing fields];
    Pound PRD(10)-a0907;
    Wardell PhD(09)-a0910 [method of matched expansions];
    Dolan & Barack PRD(11)-a1010 [m-mode regularization, and Schwarzschild spacetime];
    Pound PRD(12)-a1206 [non-linear, field outside a small body];
    Birnholtz et al PRD(13)-a1305;
    Wardell et al PRD(14)-a1401 [via Green functions and worldline integration];
    Birnholtz & Hadar PRD(15)-a1501 [in arbitrary dimensions];
    Wardell in(15)-a1506 [computational strategies];
    Oltean et al PRD(20)-a1907 [from quasilocal conservation laws].
  @ Second-order: Rosenthal PRD(06)gq;
    Gralla PRD(12)-a1203 [first-principles derivation];
    Detweiler PRD(12);
    Pound PRL(12)-a1201.
  @ Numerical calculation: Vega et al PRD(09)-a0908 [(3+1) code],
    CQG(11)-a1101;
    Merlin & Shah PRD(15)-a1410 [from reconstructed metric perturbations].
  @ Other situations / theories: Zimmerman & Poisson PRD(14)-a1406,
    Zimmerman PRD(15)-a1505 [non-vacuum spacetimes];
    Linz et al PRD(14)-a1406 [charged particles in electrovac spacetimes];
    Zimmerman PRD(15)-a1507 [scalar-tensor gravity].
  @ Related topics: Quinn & Wald PRD(99)gq [energy conservation];
    Whiting & Detweiler IJMPD(03) [and the equivalence principle];
    Linz et al PRD(14)-a1404 [on an accelerated particle];
    Maia et al PRD(17)-a1705,
    PRD(17)-a1705 [spinning bodies];
    Chu et al PRD(20)-a1910 [tail-induced effects].
In Specific Spacetimes > s.a. black-hole binaries;
  black-hole phenomenology; Geodetic Precession.
  @ Schwarzschild, static particle: Burko CQG(00)gq/99;
    Wiseman PRD(00)gq;
    Rosenthal PRD(04)gq [massive field approach].
  @ Schwarzschild, particle plunging radially: Barack PRD(00)gq;
    Barack & Burko PRD(00)gq;
    Barack & Loustó PRD(02)gq;
    Anderson et al PRD(06)gq/05 [Hadamard-WKB expansion].
  @ Schwarzschild, circular orbits: Burko PRL(00)gq;
    Nakano et al PTP(01)gq;
    Detweiler et al PRD(03)gq/02 [with scalar charge];
    Detweiler & Poisson PRD(04)gq/03 [l = 0, 1 multipoles];
    Hikida et al PTP(05)gq/04 [regularization];
    Barack & Sago PRD(07)gq;
    Detweiler PRD(08)-a0804;
    Barack & Sago PRL(09)-a0902 [innermost circular orbit];
    Blanchet et al PRD(10)-a0910;
    Blanchet et al PRD(10)-a1002 [high-order post-Newtonian fit];
    Shah et al PRD(11)-a1009 [conservative part of the self-force].
  @ Schwarzschild, other situations: Nakano & Sasaki PTP(01)gq/00;
    Barack PRD(01)gq [mode sum regularization],
    et al PRL(02)gq/01;
    Mino et al PTP(02)gq/01;
    Barack & Ori PRD(02)gq [regularization parameters];
    Burko PRD(03);
    Sago et al PRD(03)gq/02,
    Nakano et al PRD(03) [gauge problem];
    Messaritaki PhD(03)gq;
    Anderson & Hu PRD(04)gq/03 [particle + scalar field];
    Rosenthal PRD(04) [massive field approach];
    Hikida et al CQG(05)gq/04 [regularization];
    Sago et al PRD(08)-a0811 [comparing two approaches];
    Damour PRD(09)-a0910 [effective one-body formalism];
    Barack & Sago PRD(10)-a1002,
    PRD(11)-a1101 [eccentric orbit];
    Keidl et al PRD(10)-a1004 [in a radiation gauge];
    Barack et al PRD(10) [precession effect];
    Akcay PRD(11)-a1012,
    Akcay et al PRD(12);
    Vega et al PRD(13)-a1307 [eccentric orbits];
    Vines & Flanagan PRD(15)-a1503 [motion under the conservative self-force];
    Bini et al PRD(16)-a1601 [new analytical results];
    Heffernan et al CQG(18)-a1712 [accelerated motion].
  @ Schwarzschild, charged particle: Hikida et al PTP(04)gq/03,
    Haas & Poisson PRD(06)gq [with scalar charge];
    Cañizares  & Sopuerta PRD(09)-a0903 [circular orbit];
    Kim a1001;
    Cañizares et al PRD(10)-a1006 [pseudospectral collocation methods];
    Krtouš & Zelnikov PRD(20)-a1910 [static charge].
  @ Kerr: Kennefick & Ori PRD(96)gq/95,
    Kennefick PRD(98)gq [circular orbits];
    Barack & Ori PRL(03);
    Sago et al PTP(05)gq [evolution of E, L, Q];
    Barack et al PRD(07)-a0709,
    Dolan et al PRD(11)-a1107 [m-mode regularization];
    Barack CQG(09)-a0908 [extreme mass ratio];
    Warburton & Barack PRD(10)-a1003,
    PRD(11)-a1103;
    Isoyama et al PRL(14)-a1404 [innermost stable circular equatorial orbit];
    Warburton PRD(15)-a1408 [scalar charge];
    Sago & Fujita PTEP(15)-a1505 [radiation reaction effect on orbital parameters];
    van de Meent PRD(16)-a1606 [eccentric equatorial orbits];
    van de Meent PRD(18)-a1711 [generic bound geodesics];
    > s.a. particles in kerr spacetimes.
  @ Other isolated objects: Burko et al PRD(01)gq/00 [spherical shell];
    Burko & Liu PRD(01)gq [axisymmetric black hole];
    Shankar & Whiting PRD(07)-a0707 [charge near spherical conducting star];
    Drivas & Gralla CQG(11)-a1009 [dependence on central object];
    Yen et al JCP(12)-a1210,
    Wang et al ApJS(15)-a1509 [infinitesimally thin disk];
    Castillo et al PRD(18)-a1804 [Reissner-Nordström black hole];
    Mackewicz & Wald PRD(19)-a1909 [Kerr-Newman, spin self-force].
  @ Wormholes: Khusnutdinov & Bakhmatov PRD(07)-a0707;
    Bezerra & Khusnutdinov PRD(09)-a0901;
    Khusnutdinov et al CQG(10).
  @ Cosmological spacetimes: Burko et al PRD(02);
    Haas & Poisson CQG(05)gq/04.
Applications
  > s.a. dynamics of gravitating bodies; orbits
  of gravitating objects [equations of motion]; Post-Newtonian Formalism.
  @ References: Isoyama & Poisson CQG(12)-a1205 [as probe of internal structure of a massive body].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 25 jul 2020