|  Bose-Einstein Condensates | 
In General > s.a. gas [boson gas];
  quantum phase transitions [including fermion condensation].
  * Idea: Bose-Einstein condensation
    is a phase transition of a boson gas, consisting in the amalgamation of many
    bosonic atoms so cold and dense (chilled to nearly 0 K) that they act as a single
    quantum state, essentially a single "superparticle"; This occurs when
    T is so low that the atoms' de Broglie wavelength becomes comparable
    to the distance between them; Similar to Cooper pairs in superconductors.
  * History, theory: Started
    with S N Bose's letter to Einstein in 1924, after his paper was rejected by
    Philosophical Magazine; Einstein extended the ideas to massive particles in
    1925; Viewed with skepticism (how can you have condensation in an ideal gas,
    without forces, no applications, ...) until 1938, when F London proposed it
    to explain He superfluidity, discovered in 1928.
  * History, experiment:
    1995, First produced with a trapped atomic gas of 5 million Rb atoms, directly
    observable; 2001, Nobel prize for physics given for Bose-Einstein condensation
    in dilute gases of alkali atoms; 1998, Observed in H atoms (at T ≈
    40 μK, with about 100 million atoms); 2003, Observed in Ytterbium, which
    differs from most of the elements that had previously been condensed because it
    has two valence electrons rather than one, and can be prepared in a non-magnetic
    state; 2005, Observed in Chromium, which has a very large magnetic dipole moment.
  * Properties: Enormous indices
    of refraction.
  @ Books: Pitaevskii & Stringari 03;
    Annett 04 [intro];
    Griffin et al 09;
    in Chang & Ge 17.
  @ General references: Scharf AJP(93)sep;
    Cornell & Wieman SA(98)mar;
    Ketterle PT(99)dec [experiments];
    Burnett et al PT(99)dec [theory];
    Collins SA(00)dec;
    Yukalov PLA(06) [self-consistent theory];
    Yukalov PPN(11)-a1105 [rev];
    Ferrari EJP(11) [pedagogical];
    Tsubota et al PRP(13) [rev];
    Bao a1403-proc [mathematical models and numerical methods, rev];
    Liebert & Schilling PRR(21)-a2010 [one-particle reduced density matrix approach].
  @ Dynamics: Schlein a0704-proc;
    Caspar et al PRA(16)-a1511 [dissipative];
    Davis et al a1601-ch [BEC formation and dynamics of phase transitions].
  @ Perturbations: Barceló et al PRD(10)-a1006 [quasiparticles and quantization];
    Kurita et al PRA(10)-a1007 [particle creation];
    Prain et al PRD(10)-a1009 [expanding BEC];
    Chatterjee & Diakonis JPA(14)-a1306 [thermal fluctuations];
    Wang et al PRL(15) [with electrons in Rydberg states].
  @ Related topics: Dorlas et al JSP(05)mp [and long cycles];
    Schützhold PRL(06) [accurate phonon detection];
    Healey FP(11)-a0910 [Gedanken-experiments, reduction and emergence];
    Dalton AP(11) [interferometry and decoherence];
    Gagatsos et al OSID(13)-a1207 [and mutual information];
    Andreev a2007
      [hydrodynamics beyond the  mean-field approximation];
    > s.a. geometric phase; Gross-Pitaevskii
      Equation; unruh effect.
  @ Applications: focus Phy(14) [ultraprecise measurements];
    > s.a. monopoles; quantum computation;
      rotations; solid matter [supersolids].
Gravity-Related Topics > s.a. gravitational-wave detection
  and propagation;  semiclassical quantum gravity.
  @ General references: Fagnocchi et al NJP(10)-a1001 [relativistic BECs];
    news pw(10)jun [BECs in free fall];
    Rivas & Camacho MPLA(11)-a1101 [in a homogeneous gravitational field];
    Akant et al a1306 [on a manifold with non-negative Ricci curvature];
    Mukherjee et al PRD(15)-a1409 [constraints on condensate stars];
    Schroven et al PRD(15)-a1507,
    Brito et al PLB(16)-a1508 [self-gravitating BECs];
    Chavanis & Matos EPJP-a1606 [hydrodynamic approach].
  @ And black holes: Kühnel & Sundborg a1401 [as graviton condensates, with extra dimensions];
    > s.a. black-hole analogs.
  @ And neutron stars: Gruber & Pelster EPJD(14)-a1403 [at finite temperature];
    Pethick et al a1507-in.
  @ As dark matter: Lundgren et al ApJL(10)-a1001 [ultra-light scalar particles];
    Harko JCAP(11)-a1105 [condensation in dwarf galaxies];
    Harko & Mocanu PRD(12)-a1203 [cosmological evolution];
    Dwornik et al proc(14)-a1210 [and galactic rotation curves];
    Bettoni et al JCAP(14)-a1310 [relativistic BEC on a curved background];
    Li et al PRD(14)-a1310 [constraints];
    Diez-Tejedor et al PRD(14)-a1404 [in dwarf spheroidal galaxies];
    Das & Bhaduri CQG(15)-a1411 [gravitons, and dark energy];
    Cohen-Tannoudji AFLB-a1507 [Mach's ether and the QCD vacuum];
    Harko et al JCAP-a1510 [at galaxy cluster scales];
    Capolupo AHEP(16)-a1608 [and dark energy];
    Zhang et al EPJC(18)-a1804 [galactic halos];
    Das & Bhaduri a1808-pn [rev];
    Castellanos et al IJMPD(20)-a1910 [test];
    Rindler-Daller a2104 [quantum-coherent dark matter in the Milky Way];
    > s.a. types of dark matter.
  @ Spacetime as a condensate: Gielen PRD(15)-a1411 [perturbations];
    Cadoni et al PRD(18)-a1801 [de Sitter space];
    > s.a. emergent gravity.
  @ In cosmology: Gielen CQG(14)-a1404 [loop quantum gravity];
    Erdem & Gültekin JCAP(19)-a1908 [mechanism].
  @ As analog systems: Bravo et al EPJQT-a1406 [and gravitational waves, quantum simulation];
    Leizerovitch & Reznik a1711 [Kaluza-Klein fields];
    Eckel et al PRX(18) [expanding universe model];
    > s.a. wormholes.
  > And quantum gravity: see gravitating
    many-body systems; lorentz symmetry breaking; matter
    in quantum gravity; GUP phenomenology.
Other Models and Examples
  > s.a. atomic physics; effective field theories;
  light; sound; temperature;
  vacuum [fluctuation].
  * Examples: Superfluid
    \({}^3\)He and superconducting metals contain BECs of fermion pairs.
  * And interactions: In 1947
    Nikolay Bogoliubov developed a theory to describe interacting BECs, and he
    predicted the fraction of atoms that remains in the BEC as a function of
    the strength of the interactions between them; 2017, The predictions of
    the theory have been experimentally confirmed.
  @ Specific types of gases:
    news pn(95)jul,
    pn(95)aug,
    pn(98)nov,
    pn(99)jun,
    Bradley et al PRL(95) [atoms];
    Wynar et al Sci(00)feb
    + pn(00)feb [Rb\(^~_2\) molecules];
    Hall AJP(03)jul [trapped dilute gases, RL];
    Takasu et al PRL(03) [in Yb];
    Grether et al PRL(07) [relativistic ideal Bose gas];
    Stellmer et al PRL(09),
    Martínez et al PRL(09)
    + Zelevinsky Phy(09)
      [84Sr];
    Deng et al RMP(10),
    Snoke & Littlewood PT(10)aug [polariton gas, towards room temperature];
    Hainzl & Seiringer LMP(12) [gas of fermion pairs, described by the Gross-Pitaevskii functional];
    Halder et al PRA(12) [two-electron atoms];
    Zhang et al a2006 [molecular].
  @ Theoretical models: Damski & Zurek PRL(07) [spin-1, quantum phase transition];
    Kurita et al PRA(09) [inhomogeneous, in curved-spacetime analog];
    Jaeck et al JSP(09)-a0905 [in random external potentials];
    Dolgov et al JCAP(09) [non-zero temperature model electrodynamics];
    Kawaguchi & Ueda PRP(12) [spinor BECs];
    Castellanos & Chacón-Acosta PLB(13)-a1301 [1D polymers, using lqg effective Hamiltonian];
    Bolte & Kerner proc(15)-a1403 [on quantum graphs];
    Castellanos et al IJTP(17)-a1605 [polymer quantization];
    Kanda RVMP(17)-a1705 [on graphs].
  @ For photons: news PT(11)feb [experiments with photons and molecules in an optical cavity];
    Kirton & Keeling PRL(13) [non-equilibrium model];
    Schmitt et al PRL(14)
      [observation of grand-canonical number statistics];
    Cheng a1412 [in the universe];
    Mendonça & Terças PRA(17)-a1704 [in a plasma];
    Nyman & Walker JMO(18)-a1706 [by scattering from a fluorescent dye in a microcavity];
    Müller PRA(19)-a1801 [framework].
  @ And interactions: Smith et al PRL(11) [effect of interactions];
    Lopes et al PRL(17) [confirming Bogoliubov's theory];
    de Oliveira & Michelangeli RVMP(19)-a1811 [two-component condensates].
  @ 2D: Cho et al NJP(15)-a1409;
    Viebahn et al PRL(19)
    + Santos Phy(19)
      [on a 2D quasicrystal optical lattice];
    Caraci et al a2011 [Gross-Pitaevskii regime].
  @ Other systems: Petrellis et al AP(11)-a1105 [N bosons + 1 fermion];
    Berges & Sexty PRL(12) [relativistic field theories far from equilibrium];
    Carusotto et al NJP(13) [atomic and solid-state physics];
    Finazzi & Carusotto PRA(14)-a1309 [atomic, entangled phonons];
    Lee et al NJP(15)-a1409 [composite bosons, quantum-information approach];
    > s.a. Zitterbewegung.
  @ Related topics: Reichel SA(05)feb [and microchips];
    Lye et al PRL(05) [in a random potential];
    Balewski et al Nat(13)oct-a1306 [coupled to a single electron];
    news pw(13)ul [faster, all-laser cooling process];
    Berezhiani & Khoury PRD(19)-a1812 [emergent long-range interactions];
    news pt(20)jun,
    sn(20)jun [Rb BEC's in the Cold Atom Lab on the ISS].
  > Generalizations:
    see Fermi-Einstein Condensation.
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 8 may 2021