|  Generalized Thermodynamics | 
Extended thermodynamics
  > s.a. particle statistics [fractional].
  * In general: Developed as
    a way out of the paradox of infinite speed of propagation of heat pulses
    (parabolic heat conduction equation), i.e., to make it consistent with
    special relativity; The first parabolic equation was obtained in 1948 by
    Cattaneo, who introduced a relaxation term in th Fourier law, but this
    led to other problems; There are now two approaches, rational and
    irreversible.
  @ References: Müller & Ruggeri 93;
    Pennisi et al mp/07;
    Carrisi et al a0712
      [dense gases and macromolecular fluids].
Relativistic Thermodynamics and Statistical Mechanics
  > s.a. heat [conduction]; temperature.
  * Status: 2009, The
    unification of relativity and thermodynamics has long been a subject of
    considerable debate; The reasons are that (i) Thermodynamic variables are
    non-local and thus single out a preferred class of hyperplanes in spacetime,
    and no consensus has been reached on the correct relativistic transformation
    laws for thermodynamic quantities; (ii) There exist different, seemingly
    equally plausible ways of defining heat and work in relativistic systems.
  * Some approaches:
    van Kampen covariant theory, Rohrlich proposal, Ares de Parga &
    López-Carrera [PhyA(07)] proposal.
  @ General references: Hamity PR(69);
    ter Haar & Wergeland PRP(71);
    Maartens ap/96-ln;
    Lavagno PLA(02) [non-extensive];
    Kuckert mp/02-conf [moving frame];
    Garcia-Colin & Sandoval-Villalbazo JNT(06)gq/05 [non-equilibrium];
    Ares de Parga et al JPA(05);
    Lehmann JMP(06)mp [equilibrium];
    López-Carrera & Ares de Parga PhyA(07) [transformation of canonical distribution function];
    Requardt a0801;
    Ares de Parga & López-Carrera PhyA(09) [Nakamura formalism];
    Dunkel et al NatP(09)-a0902 [using the past light cone];
    Bíró & Ván EPL(10) [from special-relativistic hydrodynamics];
    Güémez EJP(10) [first law];
    Hakim 11 [graduate text];
    Przanowski & Tosiek PS(11);
    Becattini PRL(12)-a1201 [and the stress-energy tensor];
    Derakhshani a1908
      [rev, and black body radiation in moving frames];
    Gavassino a2105 [examining assumptions].
  @ Notions of equilibrium:
    Chirco et al PRD(13)-a1309 [for coupled, parametrized systems];
    Becattini et al EPJC(15)-a1403;
    Chirco et al CQG(16)-a1503 [and time and energy, reparametrization-invariant systems].
  @ Covariant entropy:
    Kaniadakis PRE(02),
    PRE(05)cm,
    PhyA(06)ht;
    Nakamura PLA(06) [finite-volume object].
  @ Covariant approach, other: Kuckert AP(02) [covariant equilibrium];
    Schieve FP(05);
    Hosseinzadeh et al PRD(15)-a1506 [and non-commutative space].
  @ Types of systems: Cimmelli & Francaviglia GRG(01) [non-viscous, heat-conducting fluids];
    Kowalski et al PRD(07)-a0712 [ideal gas];
    Tsintsadze & Tsintsadze a1212 [Fermi gas in a strong magnetic field];
    Chirco & Josset a1606 [covariant systems with multi-fingered time].
  @ In cosmology / curved spacetime: Tolman 34;
    Coley PLA(89) [with heat conduction];
    Hayward gq/98 [in general relativity];
    Vacaru gq/00,
    AP(01)gq/00;
    Chrobok & von Borzeszkowski GRG(06) [and spacetime geometry];
    Klein & Collas CQG(09)-a0810 [with timelike Killing fields];
    Frønsdal a1106;
    Rojas & Arenas a1110
      [how thermodynamics is modified when gravity is included];
    Rovelli PRD(13)-a1209 [general relativistic];
    Becattini APPB(16)-a1606 [equilibrium];
    Bianchi et al GRG(17)-a1306 [pure and mixed states];
    Lima et al PRD(19)-a1911 [thermodynamic equilibrium].
  @ Quantum gravity-motivated: Fityo PLA(08)-a0712 [deformed spaces with minimal length].
Quantum Thermodynamics > s.a. complexity;
  generalized uncertainty principle.
  * Idea: 2015, An
    emerging research field aiming to extend standard thermodynamics and
    non-equilibrium statistical physics to ensembles of sizes well below
    the thermodynamic limit, in non-equilibrium situations, and with the
    full inclusion of quantum effects; Recent efforts in the field have
    been inspired by quantum information theory and its application to
    thermodynamic machines with quantum components.
  @ Intros and reviews:
    Vinjanampathy & Anders CP(16)-a1508 [rev];
    Millen & Xuereb NJP(16)-a1509 [rev];
    Ribeiro et al AJP(16)dec [pedagogical];
    Facchi & Garnero a1705-ln [and canonical typicality];
    blog Quanta(17)may;
    Alicki & Kosloff a1801;
    Potts a1906-ln.
  @ General references: Syros LMP(99);
    Alicki et al OSID(04)qp [and information, Hamiltonian];
    Fröhlich et al in(03)mp/04 [with time-dependent forces];
    Sukhanov TMP(08) [with quantum effects];
    Horodecki & Oppenheim nComm(13)-a1111 [quantum and nano thermodynamics];
    Dorner PRL(13)
    + Mazzola et al PRL(13)
    + news PhysOrg(13)jul;
    Kosloff Ent(13)-a1305 [emergence of thermodynamical laws from quantum mechanics];
    Binder et al PRE(15)-a1406 [operational thermodynamics of open quantum systems];
    Kammerlander & Anders SRep(16)-a1502 [coherence and measurement];
    Funo & Quan PRL(18)-a1708 [path-integral approach];
    Uzdin & Rahav PRX(18) [global passivity and small systems];
    Weilenmann a1807-PhD;
    Halpern PhD(18)-a1807 [quantum-information-theoretic thermodynamics];
    Floerchinger & Haas a2004 [based on relative entropy, and quantum field theory];
    Teixidó-Bonfill et al PRA(20)-a2008 [quantum fields, first law].
  @ Resource theory approach: Lostaglio RPP(19)-a1807 [introduction];
    Sapienza et al nComm(19)-a1810 [correlations as a resource].
  @ Work and the first law: Korzekwa et al NJP(16)-a1506 [work extraction from quantum coherence];
    Alhambra et al PRA(18)-a1506 [and reversibility];
    Hossein-Nejad et al NJP-a1507
      [bipartite systems, work, heat and entropy production];
    Alonso et al PRL(16)-a1508 [weakly measured systems];
    Alipour et al sRep(16)-a1606;
    Whitney PRB(18)-a1611 [non-Markovian];
    Ahmadi et al a1912 [heat and work];
    de Lima Bernardo a2009 [role of coherence];
    Vallejo et al a2103 [two-level systems].
  @ Quantum second law: Brandão et al PNAS(15)-a1305 [second law];
    Ćwikliński et al PRL(15)
    + Huber Phy(15) [and evolution of quantum coherence];
    Alhambra et al PRX(16)-a1601 [as an equality];
    Iyoda et al PRL(17)-a1603 [and fluctuation theorem];
    Gherardini et al QST(18)-a1706 [entropy production and irreversibility];
    Müller PRX(18) [family of second laws?];
    Touil et al a2102 [for quantum correlations].
  @ Evolution of coherence:
    Lostaglio et al PRX(15).
  @ Related topics:
    Soltanmanesh et al a1909
      [thermodynamic behavior of distant entangled particles];
    > s.a. arrow of time; gases;
      Heat Engines; interpretations of quantum theory;
      quantum correlations; Squeezed States;
      thermodynamic systems.
Other References
  > s.a. thermodyamic laws [generalizations].
  @ General: Tisza 66;
    Müller & Ruggeri 98 [rational approach];
    Treumann PS(99),
    PS(99) [Lorentzian];
    Bera et al nComm(17)-a1612 [with correlations, universal].
  @ Irreversible: Chen JMP(00);
    Vasconcellos et al RNC(01) [non-equilibrium statistical ensemble];
    Luzzi et al RNC(06);
    Jou et al 10;
    Gorban et al PhyA(13);
    Schellstede et al GRG(13) [relativistic];
    Hanel a1608 [thermodynamic action principle].
  @ Microcanonical: Gross & Kenney JChP(05)cm.
  @ Nanoscale, small-scale systems: Lostaglio et al nComm(15)-a1412 [extended laws];
    Halpern a1509-proc [resource theories, physical realizations];
    van der Meer et al PRA(17)-a1706 [smoothed generalized free energies];
    Ciliberto PRX(17) [rev, experimental and theoretical results].
  @ Photon gas with invariant energy scale:
    Das & Roychowdhury PRD(10)-a1002;
    Zhang et al APP(11)-a1102;
    Das et al Sigma(14)-a1411;
    Gorji et al JSM(16)-a1606 [in dS and AdS momentum spaces].
  @ Other generalizations: Lavenda NCB(99);
    Vives & Planes PRL(02) [Tsallis thermodynamics];
    Belgiorno JMP(03) [quasi-homogeneous thermodynamics and black holes];
    Chavanis PhyA(04) [generalized entropies];
    Eichhorn & Aurell PS(14),
    Strasberg PRE(19)-a1810 [stochastic thermodynamics].
  > Other generalizations:
    see ideal gas [DSR, etc]; non-equilibrium
    statistical mechanics and thermodynamics; non-extensive statistics;
    probability in physics [in general probabilistic theories];
    types of entropy [Rényi quantum thermodynamics].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 may 2021