|  Knot Invariants | 
In General > s.a. Braids; knot theory
  [for generalized knots]; types of homology.
  * Idea: They can be generated
    as coefficients of polynomials using group theory; Braids can be used as a
    calculational tool.
  @ General references: Buck & Flapan JPA(07) [topological characterization];
    Chmutov et al 12 [specially Vassiliev invariants];
    Li 15.
  @ Enumeration: Jacobsen & Zinn-Justin mp/01,
    mp/01 [transfer-matrix approach].
  @ Classification algorithms: Aneziris ht/94-conf,
    qa/95,
    qa/95,
    qa/96,
    qa/96-conf,
    qa/97-proc;
    Flammini & Stasiak PRS(07).
  @ Polynomials: Akutsu & Wadati JPSJ(87),
    et al JPSJ(87),
    JPSJ(88);
    Jones AM(87);
    Lickorish & Millett Top(87);
    Deguchi et al JPSJ(88);
    Akutsu et al JPSJ(88);
    Kauffman IJMPA(90);
    Broda PLB(91),
    JMP(94);
    Suffczynski PLA(96) [rep];
    Labastida & Mariño JKTR(02)m.QA/01;
    Zodinmawia & Ramadevi a1209 [for non-torus knots and links];
    Dolotin & Morozov NPB(14)-a1308 [tensor-algebra approach];
    Witten a1401 [gauge-theory approach].
  @ Space of knot invariants: Arthamonov et al TMP(14) [differential hierarchy of knot polynomials]. 
  > Online resources:
    see MathWorld page.
Specific Invariants > s.a. energy.
  * Alexander polynomial:
    Satisfies Δk+1(t)
    = Δk(t)
    Δ1(t);
  Examples: Δunknot(t)
    = 1; Δtrefoil(t)
    = t 2 − t + 1;
    Δfigure 8(t)
    = t 2 − 3t + 1.
  * Conway polynomial:
    Defined by Cunknot(z)
    = 1 and the skein relations CL+(z)
    − CL−(z)
    = z CL0(z),
    where the Ls refer to the two possibilities for a crossing in a plane projection and to
    the crossing replaced by the lines reconnected in such a way that they do not cross; To extend it
    to double intersections, define CLW
    = CL0 and
    CLI
    = \(1\over2\)(CL+
    + CL−)
    for the two possible routings.
  * Helicity: A second-order integral in field amplitudes.
  *   HOMFLY polynomial: A 2-variable oriented knot polynomial
    PL(a,z) motivated by the
    Jones polynomial, and named after its co-discoverers Hoste, Ocneanu, Millett, Freyd, Lickorish, and Yetter;
    > s.a. MathWorld page;
    Wikipedia page.
  * Kauffman bracket polynomial:
  * Unknotting number:
    The minimal number of self-crossings needed to obtain the unknot.
  @ Alexander-Conway polynomial:
    Kauffman Top(81);
    Friedman Top(04) [generalization];
    Tsutsumi & Yamada Top(04) [and Dehn surgery];
    Garoufalidis & Teichner JDG(04) [trivial polynomial];
    Kashaev a2007.
  @ Jones polynomial: Jones BAMS(85);
    Kauffman Top(87);
    Witten CMP(89) [and Chern-Simons theory];
    Zulli Top(95),
    Chang & Shrock PhyA(01)mp/01 [computation];
    Subramaniam & Ramadevi qp/02,
    Lomonaco & Kauffman SPIE(06)qp,
    Garnerone et al LP(06)qp [quantum computation];
    Loebl & Moffatt AAM(11)-a0705 [from the permanent of a matrix];
    Kauffman & Lomonaco SPIE(07)-a0706 [algorithms];
    Gelca a0901 [and quantum mechanics];
    Kuperberg ToC-a0908 [approximation];
    Gaiotto & Witten ATMP(12)-a1106 [from 4D gauge theory];
    Allen & Swenberg a2011 [and causality];
    > s.a. spin networks.
  @ Kauffman invariant:
    Astorino PRD(10)-a1005,
    Liu AP(10) [and Chern-Simons theory].
  @ HOMFLY polynomial:
    Freyd et al BAMS(85);
    Mironov et al TMP(13) [genus expansion];
    Anokhina & Morozov TMP(14) [cabling procedure].
  @ HOMFLY polynomial, other types:
    Labastida & Mariño IJMPA(95) [torus knots, from CS theory];
    Morozov et al PLB(14)-a1407,
    PLB(16)-a1511 [virtual knots].
  @ Vassiliev:
    Chmutov et al 12 [r BAMS(13)].
  @ Third-order invariant: Berger JPA(90);
    Evans & Berger in(92).
Related Topics
  > s.a. Link Theory; topological field theories.
  * And quantum groups:
    For every simple Lie algebra \(\cal G\) there is a Hopf algebra \(U_q\)(\(\cal G\)),
    and a polynomial link invariant; For example, \(U_q\)(sl2)
    corresponds to the Jones polynomial; HOMFLY.
  * And topological field theories:
    The expectation value of Wilson loop operators in three-dimensional SO(N)
    Chern-Simons gauge theory gives a known knot invariant, the Kauffman polynomial.
  @ For torus knots: Labastida & Pérez JMP(96)qa/95 [HOMFLY and Kauffman];
    Álvarez & Labastida JKTR(96) [Vassiliev];
    Stevan AHP(10)-a1003 [HOMFLY and Kauffman invariants, from Chern-Simons theory].
  @ And quantum groups: Sawin BAMS(96)qa/95;
    Nikshych et al T&A(02);
    Turaev 10.
  @ And 3-manifolds: Blanchet et al Top(92) [Kauffman bracket and 3-manifold invariants];
    Kauffman & Baadhio ed-93 [quantum field theory methods, quantum topology];
    Eisermann Top(04);
    Grishanov & Vassiliev T&A(08) [non-trivial, weight systems].
  @ And embedded graphs:
    Moffatt EJC(08)
      [Bollobás-Riordan polynomial].
  @ Related topics: Adams PAMS(89) + refs [Gromov invariant];
    O'Hara Top(91) [energy];
    Akhmetiev & Ruzmaikin JGP(95) [Sato-Levine as 4th-order integral];
    Gukov a0706-conf
      [homological, from topological gauge theories];
    Morozov TMP(16)-a1509 [p-adic knot invariants];
    Pavlyuk UJP-a1511 [holographic principle];
    Elliot & Gukov a1505 [hyperpolynomials].
 main page
  – abbreviations
  – journals – comments
  – other sites – acknowledgements
  send feedback and suggestions to bombelli at olemiss.edu – modified 20 nov 2020