Large-Scale Spatial Geometry of the Universe |
In General > s.a. cosmological
models; expansion rate [including vorticity and shear].
* Idea: The spatial
geometry is approximately flat, homogeneous and isotropic, at least
locally; The universe may not be "globally" homogeneous and isotropic.
* Distances: In
cosmology, distances are determined based on standard candles
(e.g., supernovae) or standard rulers (e.g., baryon oscillations); The
two methods agree (duality) if some conditions on the physics are met.
* Radius of curvature:
It is related to the Hubble parameter and the total mass-energy density by
R = (c/H0) (1 / |1−Ωtot|1/2) .
* Status: 2000, Evidence for
zero overall spatial curvature (Boomerang); 2003, Evidence for small positive
curvature (WMAP), with radius \(R = 3.0 \times 10^4\) Mpc using current
parameter values; 2012, Evidence for small curvature \(\Omega_{\rm dm}
= 0.002 \pm 0.009\), using the integrated Sachs-Wolfe effect; 2013, Evidence
for small negative curvature from anomalies in the cmb fluctuation variance; 2020, Support for spatially flat universe.
@ II: Adams & Shapiro AS(01)sep [10 orientable Euclidean 3-geometries];
Levin 02.
@ General references: Fagundes GRG(92)-a0812
+ GRG(98)gq [closed spaces, rev];
Manchak SHPMP(09) [global structure is underdetermined];
Stebbins IJMPD(12)-a1205-GRF [using observables as coordinates, without assumptions];
Bester et al MNRAS(15)-a1506 [algorithm using data].
> Related topics:
see Flatness Problem; large-scale topology of the universe;
quantum geometry [microscopic scale].
Distances and Observations in Cosmology
> s.a. expansion rate; observation
[cosmic parallax]; rotation.
@ Distances:
Hogg ap/99 [pedagogical];
Jensen et al ap/03-in;
Bassett & Kunz PRD(04),
Kunz & Bassett ap/04-proc [distance duality, standard candles and rulers];
Lu & Hellaby CQG(07)-a0705 [determining the metric from observations];
Räsänen JCAP(09)-a0812 [redshift and areal distance, clumping effects];
de Grijs IAU(12)-a1209 [status];
Kaiser & Hudson MNRAS(15)-a1502 [kinematic bias];
Nikolaev & Chervon G&C(16)-a1604 [measuring angular diameter distances];
Holz et al PT(18)dec [gravitational waves, standard sirens];
Chassande-Mottin et al a1906 [gravitational waves];
Li & Zhang a2005 [novel method].
@ Luminosity distance:
Caldwell & Kamionkowski JCAP(04)ap [effects of geometry and expansion history];
Malec et al GRG(04)gq [and areal distance];
Adachi & Kasai PTP(12)-a1111 [flat cosmologies with cosmological constant];
Flanagan et al PRD(13)-a1207 [fluctuations from lensing, Swiss-cheese model];
> s.a. effect of perturbations;
light propagation.
@ Distance-redshift relation: Flanagan et al PRD(09)-a0810 [in modified gravity theories];
Lasky & Bolejko CQG(10)-a1001 [effect of pressure gradients];
Clarkson et al JCAP(14)-a1405 [shift in the distance-redshift relation, and consequences];
Hada & Futamase JCAP(14)-a1410 [magnitude-redshift relation in an inhomogeneous universe];
Wei et al MNRAS(15)-a1411 [galaxy-cluster angular size versus redshift];
Amirkhanyan AB(14)-a1501 [angular size and redshift];
Veropalumbo et al MNRAS(16)-a1510 [and baryon acoustic oscillations];
Shchigolev G&C(17)-a1511 [calculation via homotopy perturbation method];
Oguri PRD(16)-a1603 [from the cross-correlation of gravitational wave standard sirens and galaxies];
More et al a1612
[general Etherington distance duality relation].
@ Light propagation and geometry: Samushia et al PLB(10) [lookback time vs redshift, and dark energy];
López-Corredoira IJMPD(10)-a1002 [galaxy angular sizes];
Räsänen PRD(12)-a1107 [redshift, angular sizes];
Christiansen & Siver AJP(12)may-a1204 [brightness, angular sizes and expansion];
Melia CQG(13)-a1207 [proper size of the visible universe].
Spatial Curvature > s.a. cosmological parameters.
@ General references:
Roos & Harun-or-Rashid ap/00,
ap/00 [flatness];
Knox PRD(06)ap/05 [proposal];
Vardanyan et al MNRAS(09)-a0901 [model comparison perspective];
Dossett & Ishak PRD(12)-a1205 [and cosmological tests of gravity];
Kleban & Schillo JCAP(12) [and falsification of eternal inflation];
Caldwell & Gubser PRD(13)-a1302 [scalar curvature in the early universe];
Bull & Kamionkowski PRD(13) [consequences of possible non-zero value];
Bayin a1309
[argument for slight negative curvature based on the concept of gravitational temperature];
Carr & Harada PRD(15)-a1405 [the separate universe problem];
Planck Collaboration A&A(16)-a1502;
Cai et al PRD(16)-a1509 [model-independent null test];
Li et al ApJ(16)-a1611;
Coley a1905 [current situation];
Efstathiou & Gratton a2002,
Vagnozzi et al a2010 [evidence for flatness];
Tian et al PRD(21)-a2010 [in an inhomogeneous universe].
@ And perturbations, structure formation: Lyth et al JCAP(05)ap/04;
Buchert et al GRG(09)-a0906;
Bolejko a1707
[emergence of spatial curvature in a spatially flat model].
@ Measurement methods: Gu & Khlopov gq/07; Bozek et al PRD(09) [from causal entropic principle];
Mortonson PRD(09)-a0908 [model-independent tests];
Albrecht PRL(11)-a1104 [from de Sitter equilibrium cosmology];
Adler AJP(12)may
[exact spatial flatness from the tipping pencil analogy and the uncertainty principle];
Wei & Wu ApJ(17)-a1611 [model-independent method, from H(z) and supernova data];
Park & Ratra a1809 [and Hubble constant];
Arjona & Nesseris a2103 [null tests, and machine learning].
@ Measurements, contraints: Lieu & Mittaz ApJ(05)ap/03 [exactly 0];
Mersini-Houghton & Kafexhiu APP(08)-a0705 [role of cosmic priors in bounds],
comment Räsänen APP(08)-a0705 [analysis];
Okouma et al PLB(13)-a1207 [evidence for Ωdm = 0.002 ± 0.009];
news nbc(13)sep [possible evidence for negative curvature];
Leonard et al PRD(16)-a1604 [future data and accuracy];
Farooq et al ApJ(17)-a1607 [from Hubble parameter measurements].
@ From the cmb:
Hu & White ap/96-proc;
Uzan et al MNRAS(03)ap [and WMAP].
@ From supernova data: Wang et al PLB(05)ht/04;
Araújo & Stoeger MNRAS(09)-a0705 [supernova luminosity distances];
Gong et al MNRAS(11)-a1008;
Mörtsell & Jönsson a1102 [model-independent measure, from type-Ia supernovae];
Cai et al PRD(16)-a1509 [model-independent null test];
Jesus et al a1907;
Wang et al a1910.
@ From lensing: Soucail et al A&A(04)ap [Abell 2218];
Bernstein ApJ(06)ap/05.
Other Aspects
@ Homogeneity, isotropy: Roukema ASR(03)ap/01 [local vs global];
Campanelli et al PRL(06)
+ pn(06)oct [ellipsoidal shape];
Räsänen PRD(09)-a0903 [and cmb isotropy];
Yu et al RAA(11)-a1008 [smoothness parameter];
Zunckel et al PRD(11)-a1009 [multipole vectors];
Koivisto et al PRD(11) [anisotropic curvature];
> s.a. cosmological principle; Homogeneity.
@ Singularities: Szydłowski et al PRD(05)ap [big bang vs bounce, observational tests];
> s.a. types of singularities.
@ Related topics: Johnson a1505 [black holes and the curvature of space];
Gaztañaga & Fosalba a2104-GRF [universe trapped inside an event horizon].
main page
– abbreviations
– journals – comments
– other sites – acknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 19 apr 2021