Relationship between Quantum and Classical Mechanics |

**In General** > s.a. origin of quantum mechanics;
quantum probabilities; quantum
statistical mechanics [relationship with classical]; semiclassical states.

* __Dirac's view__: Classical
mechanics is formulated using commutative quantities (c-numbers) while
quantum mechanics requires non-commutative ones (q-numbers).

* __Formalism__: Two formalisms
that treat classical and quantum theory similarly are the phase-space
formulation of quantum theory (possibly based on the Wigner function) and
the Koopman-von Neumann operator approach to classical mechanics.

* __Scales__: Quantum effects
are hard to see in the macroworld, but the reason is more related with the
way quantum systems interact with one another than with size per se.

* __Non-classical aspects__: Negativity
(the necessity of negative values in quasiprobability representations of quantum
states such as the Wigner representation) and contextuality; In multipartite
systems entanglement plays a central role, but other measures of non-classicality
in single systems can be converted into entanglement;
> s.a. degree of classicality.

* __Issues__: The study of the
relationship between classical and quantum regimes of a theory, how the
correspondence principle really works; The main questions are, Which states of the
quantum theory have a classical interpretation? What predictions does the quantum
theory make for the classical observables on them, and their fluctuations?

* __Remark__: In an abstract
mathematical sense, quantum mechanics adds a metric on phase space to the
symplectic structure used in classical mechanics.

@ __Reviews, books__: Park 90;
Gutzwiller AJP(98)apr [interplay, RL];
Landsman qp/05-ch;
Arndt & Zeilinger pw(05)mar;
Bokulich 08; Vedral SA(11)jun;
Heller 18.

@ __General references__:
Taylor PhD(84)-a1806;
Woo AJP(86)oct;
Landsberg FP(88);
't Hooft JSP(88);
Hemion IJTP(90);
Sibelius FP(89);
Floyd IJMPA(00)qp/99 [trajectory representation];
Bergeron JMP(01)qp;
Ghose FP(02)qp/01,
& Samal FP(02)qp/01;
Page FP(09)qp/02;
Bartlett & Rowe JPA(03)qp/02;
Mittelstaedt IJTP(05)qp/02 [and quantum logic];
Neumaier IJMPB(03)qp [axiomatic];
Loris & Sasaki PLA(04)qp/03 [simple theorems];
Krüger qp/04
[quantum mechanics does not imply classical mechanics];
Panković et al qp/04 [as phase transition];
Curtis & Ellis EJP(06) [perturbations and probabilities];
Dreyer JPCS(07)qp/06 [classicality];
Khrennikov qp/06 [mathematical];
Nikolić AIP(07)-a0707;
Spekkens PRL(08)-a0711 [negativity and contextuality];
de Gosson a0808,
de Gosson & Hiley FP(11)-a1001 [common features];
Caruso et al AP(11) [formal equivalence];
Kisil a1204 [critique of Dirac's point of view];
Klauder JPA(12)-a1204 [coexistence, enhanced quantization];
't Hooft a1308-conf;
Stoica a1402 [principle of quantumness];
Wolfe a1409-PhD [using entanglement,
non-locality and contextuality to distinguish quantum theory from classical mechanics and other probabilistic theories];
de Gosson RVMP(15)-a1501 [and the metaplectic representation];
Rosaler Topoi-a1511 ['formal' vs 'empirical' approaches];
Zinkernagel a1603-in
[can all systems be treated quantum-mechanically?];
Zinkernagel SHPMP(16)-a1603 [the classical/quantum divide];
Renkel a1701 [building a bridge].

@ __In terms of information__:
Hung a1407 [using Fisher information];
Carcassi & Aidala IJQI-a2001 [information entropy].

@ __Classical mechanics from quantum mechanics__: Bracken qp/02 [as deformation of quantum mechanics];
Isidro et al IJGMP(09)-a0808,
IJMPA(09)-a0808 [Ricci flow];
Carcassi a0902 [as many-particle limit];
Hájíček FP(09),
JPCS(12) [maximum-entropy packets];
Blood a1009;
Terekhovich a1210 [from the path integral formulation];
Oliveira PhyA(14) [transition induced by continuous measurements];
Hájíček JPCS(15)-a1412;
Kastner a1707-talk [the role of distinguishability];
Bóna a1911;
Bru & de Siqueira Pedra a2009 [self-consistency equations].

@ __Quantum mechanics from classical mechanics__:
Heslot PRD(85);
Ghose qp/00;
Blasone et al PRA(05)qp/04,
AP(05)
[path-integral approach for 't Hooft's derivation];
Bracken qp/06-conf [semiquantum mechanics];
Khrennikov TMP(07)
[quantum mechanics as approximation to classical statistical mechanics];
Bender et al JPA(08) [quantum-like behavior of systems with complex energy];
Wetterich a0809 [four-state system];
Raftery et al PRX(14)-a1312 [dissipation-induced, experimental observation];
't Hooft a2005 [Hamiltonian, with interactions].

@ __Unified descriptions__: Koide et al JPCS(15)-a1412 [generalized variational principle];
Kryukov JMP-a1912 [common Hilbert space framework];
Nölle a2008;
Klauder a2010.

@ __Quantum theory not from quantization__:
Isidro qp/01;
Galapon JMP(04)qp/02.

**Specific Aspects and Interpretations**
> s.a. Koopman-von Neumann formalism;
quantum formalism [ambiguities] and foundations.

@ __Alternative / interpolating theories__: Tammaro FP(12) [non-classical, non-quantum theory];
Massar & Patra PRA(14)-a1403 [polygon theories];
Spekkens a1409
[quasi-quantization and epistemic restrictions on statistical distributions];
Fabris et al IJMPA(15)-a1509-proc [introducing quantum effects in classical theories];
> s.a. atomic physics [classical atomic models]; classical
mechanics [non-quantum systems]; quantum probability theory.

@ __And decoherent histories__: Halliwell PRL(99)qp,
qp/99-proc;
Gell-Mann & Hartle PRA(14)-a1312 [adaptive coarse grainings].

@ __In Bohm / pilot-wave interpretation__: Shifren et al PLA(00) [effective potential];
Allori et al JOB(02)qp/01;
Allori & Zanghì FP(09)qp/01-in;
Poirier JCP(04)-a0802;
Bowman FP(05);
Trahan & Poirier JCP(06)-a0802,
JCP(06)-a0802;
Poirier & Parlant JPC(07)-a0803;
Matzkin & Nurock SHPMP(08) [mismatch];
Poirier JChemP(08)-a0803;
Struyve IJMPA(20)-a1507;
Romano a1603-in.

@ __Related topics__: Greenberg et al PRL(95) [invariant tori and matrix mechanics];
Wilkie & Brumer PRA(97),
PRA(97) [Liouville dynamics];
Muga et al PLA(98) [observables];
Carcassi a1203 [homogeneous bodies and reducibility].

> __Related topics__: see decoherence;
classical limit [including correspondence principle];
contextuality; Correspondence Principle;
Ehrenfest Dynamics; Ehrenfest Time;
locality [localization, localized states]; macroscopic
systems [including coupled/hybrid classical and quantum systems]; quantum chaos;
quantum gravity [neither classical nor quantized theory]; quantum
statistical mechanics; Weyl Quantization.

main page
– abbreviations
– journals – comments
– other sites – acknowledgements

send feedback and suggestions to bombelli at olemiss.edu – modified 13 oct 2020