Quantum Statistical Mechanics  

In General > s.a. equilibrium [and approach to equilibrium]; quantum measurement [Zeno]; Relaxation; states in quantum statistical mechanics.
@ Texts: Khinchin 60; Kadanoff & Baym 62; Thirring 83; Ruelle mp/01-ln [operator algebras, spin]; Schieve & Horwitz 09 [r CP(10)#6]; Bogoliubov & Bogoliubov 09; Cohen a1107-ln [including non-equilibrium, fluctuations and response]; Majewski a1608-ln [and non-commutative calculus].
@ Foundations: Casati NCB(99); Fresch & Moro JChemP(10)-a0910 [thermodynamic properties in quantum pure states]; Gogolin MSc-a1003; Chiribella & Scandolo a1608 [based on entanglement, and generalized quantum theories]; Zurek PRP-a1806 [without ensembles, using entanglement].
@ Geometrical approaches: Brody & Hughston PRS(98)gq/97; Ichinose JPCS(10)-a1010 [path integral in Euclidean time].
@ Non-equilibrium theory: Nachbagauer EPJC(99)ht/98 [dissipative time evolution]; Gritsev et al NJP(10)-a0912 [many-body systems, scaling approach]; Tasaki et al a1110 [infinitely extended systems]; Attard a1406 [stochastic, dissipative Schrödinger equation]; Di Stefano et al a1704 [continuously-measured system]; Khemani et al PRX(17) [many-body localized phase, and the growth of a quantum entanglement network].
@ Other generalizations: Sukhanov & Golubeva TMP(09) ["\(\hbar\)-k dynamics"]; Bianchi et al GRG(17)-a1306 [generally covariant, in Oeckl's general-boundary formalism].

Quantum-Classical Relationship
@ General references: Prugovečki PhyA(78) [scattering]; Wreszinski & Scharf CMP(87); de Carvalho & Cavalcanti AIP(98)qp [semiclassical]; Kowalski et al PhyA(09) [quantified by Tsallis' deformation parameter q].
@ Entanglement and thermal states: Popescu et al nPhys(06)qp/05; Jeong & Ralph PRL(06).

Systems > s.a. models in statistical mechanics; quantum systems; spin models [correlations in thermal states].
@ Gas: LeClair JPA(07)ht/06 [in terms of dynamical filling fractions].
@ Small systems: Lostaglio et al PRL(15)-a1409 [statistical independence, work from absence of correlations]; Ali & Zhang a1803 [single particle]; > s.a. non-equilibrium statistical mechanics.
@ Thermofield dynamics: Laflamme NPB(89) [and geometry]; Chu & Umezawa IJMPA(94) [review]; Lawrie JPA(94) [and quantum statistical mechanics]; > s.a. casimir effect; non-commutative gravity; quantum field theory phenomenology.

Related Topics > s.a. quantum entropy and entanglement entropy.
@ General references: Lloyd PhD(88)-a1307 [pure-state quantum statistical mechanics]; Gottlieb qp/01 [classical and quantum disorder]; Sankovich mp/01 [functional integrals]; Balian SHPMP(05) [and information theory]; Khrennikov JPA(05)qp-in, qp/05-conf [pre-quantum model]; Edgal & Huber PhyA(06) [new approach]; Gordon et al NJP(10) [equilibrium by quantum observation]; Attard a1401 [decoherence, wave-function collapse, and the von Neumann density matrix]; Klimenko PhyA(14)-a1402 [note on invariant properties, CPT]; Sanz CJC(14)-a1402 [effective Markovian description]; Attard a1404 [first-principles derivation]; Deutsch et al a1806 [quantum bound on large fluctuations]; > s.a. stochastic quantization.
@ Entanglement thermodynamics: Horodecki et al PRL(02); Korbicz et al JPA(08)-a0704; Vedral a0706 [dissipative systems]; Brandão & Plenio Nat(08)-a0810 [and the second law]; Jennings & Rudolph PRE(10)-a1002 [and the arrow of time]; Alishahiha et al JHEP(13)-a1305 [laws]; Schliemann JSM(14)-a1405; Chiribella & Scandolo NJP(15)-a1504 [in general probabilistic theories]; Kundu & Pedraza JHEP(16)-a1602 [entanglement at finite temperature].

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 25 jun 2018