Lovelock Gravity  

In General > s.a. higher-order gravity theories and types of higher-order theories.
* Idea: A higher-dimensional gravity theory with higher-order curvature terms, which are considered important for the low-energy action of string theories; Lovelock terms in the action consist of the dimensionally-extended Euler densities, polynomial scalar densities in the Riemann curvature tensor with the property that their Euler-Lagrange derivatives contain derivatives of the metric only up to second order (generic polynomial scalar densities lead to Euler-Lagrange equations with derivatives of the metric of order four).
* Properties: The theory is free from ghosts; In these theories, gravity may travel faster or slower than light.
@ General references: Deruelle & Fariña-Busto PRD(90); Müller-Hoissen NPB(90); Dadhich Pra(10)-a0802 [from Bianchi derivative]; Charmousis LNP(09)-a0805 [and brane world and black holes]; Canfora et al PRD(09)-a0812 [spontaneous compactification, 4D general relativity with small cosmological constant]; Bogdanos PRD(09)-a0902 [scalar densities, diagrammatic techniques]; Dadhich at al PLB(12)-a1202 [triviality of the vacuum in critical dimensions]; Brustein & Medved PRD(13)-a1212 [as equivalent to Einstein gravity coupled to form fields]; Dadhich EPJC(16)-a1506.
@ Hamiltonian formalism: Dadhich et al PRD(16)-a1511 [dynamical structure in D > 4].
@ Other dynamics: Dadhich & Pons PLB(11)-a1012 [Lovelock-Palatini Lagrangians]; Reall et al CQG(14)-a1406 [causality and hyperbolicity]; Willison CQG(15)-a1409, IJMPD(15)-a1504 [local well-posedness, and quasilinear reformulation]; Papallo & Reall PRD(17)-a1705 [local well-posedness of the initial value problem].
@ Related topics: Cnockaert & Henneaux CQG(05)ht [and BRST cohomology]; Willison PRD(10)-a0904 [and Weyl's tube formula]; Gravanis PRD(10)-a1004 [conserved charges]; Edelstein a1303-proc [holographic aspects]; Brustein & Sherf a1711 [causality constraints]; > s.a. Riemann-Lovelock Curvature Tensor; teleparallel gravity.
@ Generalizations and related theories: Exirifard a0911 [generalized]; Charmousis a1405-ln [and Horndeski theory]; Tian & Booth CQG(16)-a1502 [Lovelock-Brans-Dicke gravity]; Bueno et al JHEP(16)-a1602 [f(Lovelock) theories]; Crisostomi et al a1710.

Black Holes > s.a. Birkhoff's Theorem; black-hole hair.
@ General references: Garraffo & Giribet MPLA(08)-a0805; Cai et al PRD(10)-a0911 [vanishing mass and entropy]; Kastor et al CQG(11)-a1106 [mass and free energy]; Dadhich et al GRG(13)-a1201 [static]; Kunstatter et al CQG(13)-a1210 [Hamiltonian dynamics of spherical black holes]; Dadhich & Ghosh a1307 [rotating, Kerr-like]; Taves PhD(13)-a1408 [formation]; Ohashi & Nozawa PRD(15)-a1507 [with non-constant-curvature horizon]; Farhangkhah IJMPD(16)-a1510 [charged]; > s.a. quasinormal modes.
@ In related theories: Dehghani et al PRD(08)-a0802 [Lovelock-Born-Infeld]; Dehghani & Mann JHEP(10)-a1004 [Lovelock-Lifshitz]; Camanho & Edelstein CQG(13)-a1103 [(A)dS black holes]; Hendi et al PTEP(15)-a1511 [with non-linear electrodynamics].
@ Instabilities: Dehghani & Pourhasan PRD(09)-a0903; Takahashi & Soda PTP(10)-a1008; Takahashi PTP(11)-a1102 [charged black holes]; Gannouji & Dadhich CQG(14)-a1311 [static].
@ Thermodynamics: Cai PLB(04)ht/03; Aiello et al CQG(05)gq [+ Hoffmann-Infeld electromagnetism]; Correa-Borbonet BJP(05)ht [entropy]; Cai & Ohta PRD(06)ht [pure Lovelock gravity]; Kastor et al CQG(10)-a1005 [Smarr formula for asymptotically AdS black holes]; Dadhich et al GRG(12)-a1110 [thermodynamical universality]; Chen & Zhang JHEP(13) [entropy].

Other Phenomenology > s.a. viscosity [bound].
@ Gravitational collapse: Crisóstomo et al PRD(04)ht [collapsing thin shells, Hamiltonian]; Nozawa & Maeda CQG(06)gq/05 [final fate]; Ohashi et al PRD(12)-a1205 [charged dust cloud]; Dadhich et al PRD(13)-a1308 [in higher dimensions].
@ Other solutions: Willison PhD(04)gq/05 [hypersurfaces and branes]; Dehghani & Dayyani PRD(09)-a0903 [wormholes]; Dehgani & Farhangkhah PLB(09)-a0904; Dadhich & Pons JMP(13)-a1210 [Nariai and Bertotti-Robinson solutions]; Dadhich et al IJMPD(17)-a1607 [compact objects]; > s.a. bianchi I spacetimes; spherical solutions.
@ Cosmology: Pavluchenko & Toporensky G&C(14)-a1212 [exact cosmological solutions]; Camanho et al PRD(14)-a1311 [generalized phase transitions, cosmological models]; Camanho et al a1604-MG14 [Kasner-type metrics].
> Online resources: see Wikipedia page.

main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at – modified 16 nov 2017