AdS-Conformal Field Theory Correspondence  

AdS-Cft Correspondence in General > s.a. anti-de sitter space / higher-order gravity; non-commutative field theory.
* Idea: There is a conjectured T-duality between physics in the bulk of AdS and a conformal field theory in the boundary; Gravitational physics in 5D anti-de Sitter space is equivalent to a supersymmetric SU(N) Yang-Mills theory, with large N, defined on the boundary of AdS; It seems to work for some more general spacetimes too; 2015, One consequence is that the reach of Einstein's theory has been extended, because one can use methods from gravitational physics to calculate quantities in other areas of physics–for example Green's function on black-hole background spacetimes and superconductivity.
* Probes: The best-known example is the relation between minimal surfaces in the bulk and entanglement entropy of a subregion in the CFT.
* Maldacena conjecture: A holographic relationship between field theory in 2+1 anti-de Sitter spacetime and a boundary conformal field theory, or between N = 4 super Yang-Mills theory in Minkowski spacetime and type IIB string theory compactified on AdS5 ⊗ S5.

Theories and Related Concepts > s.a. duality [gauge/gravity duality]; geometrodynamics; lattice field theory; QCD; Rarita-Schwinger Theory.
* Hole-ography: A prescription relating the areas of surfaces in an AdS bulk to the differential entropy of a family of intervals in the dual cft.
@ General references: Behrend et al PLB(98)ht [classification]; Gegenberg & Kunstatter PLB(00)ht/99 [5D Chern-Simons]; Lavrinenko ht/99 [Chern-Simons bulk/supergravity boundary]; Minces & Rivelles PLB(99)ht [Chern-Simons bulk]; Förste et al ht/00-proc [supersymmetric Yang-Mills, Wilson loops]; Rooman & Spindel CQG(01)ht/00; Bellucci et al PRD(02)ht; Sezgin & Sundell NPB(02)ht [higher spin].
@ Lower-dimensional: Campoleni & Fredenhagen PLB(13)-a1307 [3D, higher-spin charges of conical defects]; > s.a. 2D gravity.
@ Scalar field: Minces & Rivelles NPB(00)ht/99; Das et al PRD(01)ht.
@ And gravity: Horowitz & Polchinski in(09)gq/06 [rev]; Freidel a0804 [3D bulk, quantum gravity]; Gomes et al EPJC(13)-a1105 [and shape dynamics]; Engelhardt & Fischetti CQG(15)-a1507 [constraints on hole-ography]; > s.a. holography; supergravity [lqg-type quantization].

References > s.a. black holes and information.
@ General references / Intros: Duff IJMPA(99)ht/98-in; Schwarz LNP(99)ht/98; Petersen IJMPA(99)ht; Di Vecchia FdP(00)ht/99; Akhmedov ht/99; Zaffaroni CQG(00); Klebanov ht/00-ln; Álvarez et al IJMPD(03)ht; Maldacena ht/03-ln; de Boer et al ht/04-proc; Zapata ht/06; Năstase a0712; Klebanov & Maldacena PT(09)jan; Schwarz a1006-proc; Natsuume a1409-book; Hubeny CQG(15)-a1501 [rev]; de Haro a1501-SHPMP [and Verlinde's scheme, dualities and emergent gravity]; Năstase 15 [intro, r PT(16)aug]; Penedones a1608 [TASI lectures].
@ Maldacena conjecture: Maldacena ATMP(98)ht/97; Danielsson et al JHEP(99)ht/98; Polyakov IJMPA(99)ht/98; Witten ATMP(98)ht, JHEP(98)ht; Rehren AHP(00)ht/99, in(00)ht/99; Rivelles ht/99-conf; Bianchi NPPS(01)ht [tests]; Schroer CMP(01) [Rehren]; Hiller et al PLB(05) [2D N = (8, 8) super-Yang-Mills]; Frampton AIP(08)-a0804 [and particle phenomenology].
@ Holographic renormalization: Papadimitriou & Skenderis ht/04-proc.
@ And chaos: Rama & Sathiapalan MPLA(99)ht.
@ And black holes: Louko & Marolf PRD(99)ht/98; Hawking et al PRD(99)ht/98 [rotating]; Gregory & Ross PRD(01)ht/00 [UV/IR relations and horizons]; Fidkowski et al JHEP(04)ht/03 [singularity].
@ And collapse: Danielsson et al NPB(99)ht; Birmingham PRD(01)ht [Choptuik scaling]; Giddings & Nudelman JHEP(02)ht/01.
@ And cosmology: Gubser PRD(01)ht/99 [FLRW as boundary spacetime]; Nojiri & Odintsov PLB(00)ht; Anchordoqui et al JHEP(00)ht [quantum cosmology]; Freivogel et al JHEP(06) [inflation]; > s.a. cosmology [initial singularity].
@ And spacetime topology: Galloway et al PLB(01)ht/99 [topological censorship]; McInnes JHEP(00)ht; Krasnov ATMP(00)ht [arbitrary genus].
@ Bulk field / metric reconstruction: de Haro et al CMP(01)ht/00; Álvarez et al IJMPD(03)ht [obstruction]; Hammersley JHEP(06)ht, GRG(08) [numerical, iterative]; Bilson JHEP(08)-a0807; Freivogel et al PRD(15)-a1412 [shadows in the bulk]; Wang et al a1704 [AdS\(_3\) geometry from entanglement entropy].
@ Lorentzian: Balasubramanian et al PRD(04)ht/03 [multiple vacua]; Marolf JHEP(05)ht/04.
@ And quantum states: Boschi-Filho & Braga PLB(02) [a and a*].
@ And brane world, Randall-Sundrum: Duff & Liu PRL(00) + CQG(01)ht; McInnes NPB(01)ht/00; Shiromizu & Ida PRD(01)ht, et al JHEP(02)ht/01.
@ And entropy, thermodynamics: Susskind & Witten ht/98 [holographic bound]; Hawking et al JHEP(01)ht/00 [+ entanglement]; Witten IJMPA(01) [+ confinement, etc]; Martinec ht/98.
@ Related topics: Horowitz & Myers PRD(99)ht/98 [positive energy]; Witten & Yau ATMP(99)ht [connectedness of boundary]; Minces NPPS(04)ht [boundary conditions]; Ribeiro BJP(05)gq-proc [asymptotic Noether charges]; Young PhD-a0706; Gottschalk & Thaler a0709 [infrared problem]; Gary & Giddings PRD(09)-a0904 [and flat space S-matrix]; Sachdev ch(11)-a1002 [and condensed-matter physics]; issue LMP(12) [integrability]; Chowdhury IJMPD(15)-a1405 [ambiguity and limitations]; Matsueda a1208 [information-geometrical perspective]; > s.a. Bach Tensor; Giant Magnons; graviton [scattering]; Tensor Networks [AdS/MERA correspondence].

dS-Cft Correspondence > s.a. kerr spacetime.
@ General references: Bousso et al PRD(02)ht/01 [massive scalar]; Klemm NPB(02)ht/01; Strominger JHEP(01)ht; Abdalla et al PRD(02) [and spacetime perturbations]; Dyson et al JHEP(02); McInnes NPB(02) [vs AdS-cft]; Kabat & Lifschytz JHEP(02)ht [entropy]; Klusoň CQG(03); Guijosa & Lowe PRD(04)ht/03.
@ Phenomenology: Strominger JHEP(01)ht [inflation]; Larsen et al JHEP(02)ht [and cmb].
@ 2D: Ness & Siopsis PLB(02)ht; Cadoni et al PRD(02)ht.


main pageabbreviationsjournalscommentsother sitesacknowledgements
send feedback and suggestions to bombelli at olemiss.edu – modified 2 aug 2017